SET007 Axioms: SET007+826.ax
%------------------------------------------------------------------------------
% File : SET007+826 : TPTP v9.0.0. Released v3.4.0.
% Domain : Set Theory
% Axioms : Concatenation of Finite Sequences Reducing Overlapping Part
% Version : [Urb08] axioms.
% English :
% Refs : [Mat90] Matuszewski (1990), Formalized Mathematics
% : [Urb07] Urban (2007), MPTP 0.2: Design, Implementation, and In
% : [Urb08] Urban (2006), Email to G. Sutcliffe
% Source : [Urb08]
% Names : finseq_8 [Urb08]
% Status : Satisfiable
% Syntax : Number of formulae : 56 ( 0 unt; 0 def)
% Number of atoms : 297 ( 51 equ)
% Maximal formula atoms : 16 ( 5 avg)
% Number of connectives : 300 ( 59 ~; 4 |; 49 &)
% ( 8 <=>; 180 =>; 0 <=; 0 <~>)
% Maximal formula depth : 20 ( 9 avg)
% Maximal term depth : 6 ( 1 avg)
% Number of predicates : 12 ( 11 usr; 0 prp; 1-4 aty)
% Number of functors : 24 ( 24 usr; 5 con; 0-4 aty)
% Number of variables : 180 ( 180 !; 0 ?)
% SPC :
% Comments : The individual reference can be found in [Mat90] by looking for
% the name provided by [Urb08].
% : Translated by MPTP from the Mizar Mathematical Library 4.48.930.
% : These set theory axioms are used in encodings of problems in
% various domains, including ALG, CAT, GRP, LAT, SET, and TOP.
%------------------------------------------------------------------------------
fof(t1_finseq_8,axiom,
! [A,B] :
( m2_finseq_1(B,A)
=> k16_finseq_1(A,B,np__0) = k1_xboole_0 ) ).
fof(t2_finseq_8,axiom,
! [A,B] :
( m2_finseq_1(B,A)
=> k1_rfinseq(A,B,np__0) = B ) ).
fof(t3_finseq_8,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ! [B] :
( m2_finseq_1(B,A)
=> ! [C] :
( m2_finseq_1(C,A)
=> ( r1_xreal_0(np__1,k3_finseq_1(B))
=> k1_jordan3(A,k1_finseq_8(A,B,C),np__1,k3_finseq_1(B)) = B ) ) ) ) ).
fof(t4_finseq_8,axiom,
! [A,B] :
( m2_finseq_1(B,A)
=> ! [C] :
( m2_subset_1(C,k1_numbers,k5_numbers)
=> ( r1_xreal_0(k3_finseq_1(B),C)
=> k1_rfinseq(A,B,C) = k6_finseq_1(A) ) ) ) ).
fof(t5_finseq_8,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ! [B] :
( m2_subset_1(B,k1_numbers,k5_numbers)
=> ! [C] :
( m2_subset_1(C,k1_numbers,k5_numbers)
=> k1_jordan3(A,k6_finseq_1(A),B,C) = k6_finseq_1(A) ) ) ) ).
fof(d1_finseq_8,axiom,
! [A,B] :
( m2_finseq_1(B,A)
=> ! [C] :
( m2_subset_1(C,k1_numbers,k5_numbers)
=> ! [D] :
( m2_subset_1(D,k1_numbers,k5_numbers)
=> k2_finseq_8(A,B,C,D) = k16_finseq_1(A,k1_rfinseq(A,B,k5_binarith(C,np__1)),k5_binarith(k1_nat_1(D,np__1),C)) ) ) ) ).
fof(t6_finseq_8,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ! [B] :
( m2_finseq_1(B,A)
=> ! [C] :
( m2_subset_1(C,k1_numbers,k5_numbers)
=> ! [D] :
( m2_subset_1(D,k1_numbers,k5_numbers)
=> ( r1_xreal_0(C,D)
=> k2_finseq_8(A,B,C,D) = k1_jordan3(A,B,C,D) ) ) ) ) ) ).
fof(t7_finseq_8,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ! [B] :
( m2_finseq_1(B,A)
=> ! [C] :
( m2_subset_1(C,k1_numbers,k5_numbers)
=> k2_finseq_8(A,B,np__1,C) = k16_finseq_1(A,B,C) ) ) ) ).
fof(t8_finseq_8,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ! [B] :
( m2_finseq_1(B,A)
=> ! [C] :
( m2_subset_1(C,k1_numbers,k5_numbers)
=> ( r1_xreal_0(k3_finseq_1(B),C)
=> k2_finseq_8(A,B,np__1,C) = B ) ) ) ) ).
fof(t9_finseq_8,axiom,
! [A,B] :
( m2_finseq_1(B,A)
=> ! [C] :
( m2_subset_1(C,k1_numbers,k5_numbers)
=> ! [D] :
( m2_subset_1(D,k1_numbers,k5_numbers)
=> ( ~ r1_xreal_0(C,D)
=> ( k2_finseq_8(A,B,C,D) = k1_xboole_0
& k2_finseq_8(A,B,C,D) = k6_finseq_1(A) ) ) ) ) ) ).
fof(t10_finseq_8,axiom,
! [A,B] :
( m2_finseq_1(B,A)
=> ! [C] :
( m2_subset_1(C,k1_numbers,k5_numbers)
=> k2_finseq_8(A,B,np__0,C) = k2_finseq_8(A,B,np__1,k1_nat_1(C,np__1)) ) ) ).
fof(t11_finseq_8,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ! [B] :
( m2_finseq_1(B,A)
=> ! [C] :
( m2_finseq_1(C,A)
=> k2_finseq_8(A,k1_finseq_8(A,B,C),k1_nat_1(k3_finseq_1(B),np__1),k1_nat_1(k3_finseq_1(B),k3_finseq_1(C))) = C ) ) ) ).
fof(d2_finseq_8,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ! [B] :
( m2_finseq_1(B,A)
=> ! [C] :
( m2_finseq_1(C,A)
=> ! [D] :
( m2_finseq_1(D,A)
=> ( D = k3_finseq_8(A,B,C)
<=> ( r1_xreal_0(k3_finseq_1(D),k3_finseq_1(C))
& D = k2_finseq_8(A,C,np__1,k3_finseq_1(D))
& D = k2_finseq_8(A,B,k1_nat_1(k5_binarith(k3_finseq_1(B),k3_finseq_1(D)),np__1),k3_finseq_1(B))
& ! [E] :
( m2_subset_1(E,k1_numbers,k5_numbers)
=> ( ( r1_xreal_0(E,k3_finseq_1(C))
& k2_finseq_8(A,C,np__1,E) = k2_finseq_8(A,B,k1_nat_1(k5_binarith(k3_finseq_1(B),E),np__1),k3_finseq_1(B)) )
=> r1_xreal_0(E,k3_finseq_1(D)) ) ) ) ) ) ) ) ) ).
fof(t12_finseq_8,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ! [B] :
( m2_finseq_1(B,A)
=> ! [C] :
( m2_finseq_1(C,A)
=> r1_xreal_0(k3_finseq_1(k3_finseq_8(A,B,C)),k3_finseq_1(B)) ) ) ) ).
fof(d3_finseq_8,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ! [B] :
( m2_finseq_1(B,A)
=> ! [C] :
( m2_finseq_1(C,A)
=> k4_finseq_8(A,B,C) = k1_finseq_8(A,B,k1_rfinseq(A,C,k3_finseq_1(k3_finseq_8(A,B,C)))) ) ) ) ).
fof(t13_finseq_8,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ! [B] :
( m2_finseq_1(B,A)
=> ! [C] :
( m2_finseq_1(C,A)
=> k4_finseq_8(A,B,C) = k1_finseq_8(A,k16_finseq_1(A,B,k5_binarith(k3_finseq_1(B),k3_finseq_1(k3_finseq_8(A,B,C)))),C) ) ) ) ).
fof(d4_finseq_8,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ! [B] :
( m2_finseq_1(B,A)
=> ! [C] :
( m2_finseq_1(C,A)
=> k5_finseq_8(A,B,C) = k16_finseq_1(A,B,k5_binarith(k3_finseq_1(B),k3_finseq_1(k3_finseq_8(A,B,C)))) ) ) ) ).
fof(d5_finseq_8,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ! [B] :
( m2_finseq_1(B,A)
=> ! [C] :
( m2_finseq_1(C,A)
=> k6_finseq_8(A,B,C) = k1_rfinseq(A,C,k3_finseq_1(k3_finseq_8(A,B,C))) ) ) ) ).
fof(t14_finseq_8,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ! [B] :
( m2_finseq_1(B,A)
=> ! [C] :
( m2_finseq_1(C,A)
=> ( k4_finseq_8(A,B,C) = k1_finseq_8(A,k1_finseq_8(A,k5_finseq_8(A,B,C),k3_finseq_8(A,B,C)),k6_finseq_8(A,B,C))
& k4_finseq_8(A,B,C) = k1_finseq_8(A,k5_finseq_8(A,B,C),k1_finseq_8(A,k3_finseq_8(A,B,C),k6_finseq_8(A,B,C))) ) ) ) ) ).
fof(t15_finseq_8,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ! [B] :
( m2_finseq_1(B,A)
=> ( k4_finseq_8(A,B,B) = B
& k3_finseq_8(A,B,B) = B
& k5_finseq_8(A,B,B) = k1_xboole_0
& k6_finseq_8(A,B,B) = k1_xboole_0 ) ) ) ).
fof(t16_finseq_8,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ! [B] :
( m2_finseq_1(B,A)
=> ! [C] :
( m2_finseq_1(C,A)
=> ( k3_finseq_8(A,k1_finseq_8(A,B,C),C) = C
& k3_finseq_8(A,B,k1_finseq_8(A,B,C)) = B ) ) ) ) ).
fof(t17_finseq_8,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ! [B] :
( m2_finseq_1(B,A)
=> ! [C] :
( m2_finseq_1(C,A)
=> ( k3_finseq_1(k4_finseq_8(A,B,C)) = k5_real_1(k1_nat_1(k3_finseq_1(B),k3_finseq_1(C)),k3_finseq_1(k3_finseq_8(A,B,C)))
& k3_finseq_1(k4_finseq_8(A,B,C)) = k5_binarith(k1_nat_1(k3_finseq_1(B),k3_finseq_1(C)),k3_finseq_1(k3_finseq_8(A,B,C)))
& k3_finseq_1(k4_finseq_8(A,B,C)) = k1_nat_1(k3_finseq_1(B),k5_binarith(k3_finseq_1(C),k3_finseq_1(k3_finseq_8(A,B,C)))) ) ) ) ) ).
fof(t18_finseq_8,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ! [B] :
( m2_finseq_1(B,A)
=> ! [C] :
( m2_finseq_1(C,A)
=> ( r1_xreal_0(k3_finseq_1(k3_finseq_8(A,B,C)),k3_finseq_1(B))
& r1_xreal_0(k3_finseq_1(k3_finseq_8(A,B,C)),k3_finseq_1(C)) ) ) ) ) ).
fof(d6_finseq_8,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ! [B] :
( m2_finseq_1(B,A)
=> ( r1_finseq_8(A,B)
<=> ! [C] :
( m2_finseq_1(C,A)
=> ! [D] :
( m2_subset_1(D,k1_numbers,k5_numbers)
=> ! [E] :
( m2_subset_1(E,k1_numbers,k5_numbers)
=> ( ( r1_xreal_0(np__1,D)
& r1_xreal_0(k5_binarith(k1_nat_1(E,k3_finseq_1(B)),np__1),k3_finseq_1(C))
& k2_finseq_8(A,C,D,k5_binarith(k1_nat_1(D,k3_finseq_1(B)),np__1)) = k2_finseq_8(A,C,E,k5_binarith(k1_nat_1(E,k3_finseq_1(B)),np__1))
& k2_finseq_8(A,C,D,k5_binarith(k1_nat_1(D,k3_finseq_1(B)),np__1)) = B )
=> ( r1_xreal_0(E,D)
| r1_xreal_0(k3_finseq_1(B),k5_binarith(E,D)) ) ) ) ) ) ) ) ) ).
fof(t19_finseq_8,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ! [B] :
( m2_finseq_1(B,A)
=> ( r1_finseq_8(A,B)
<=> k3_finseq_1(k3_finseq_8(A,k1_rfinseq(A,B,np__1),B)) = np__0 ) ) ) ).
fof(d7_finseq_8,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ! [B] :
( m2_finseq_1(B,A)
=> ! [C] :
( m2_finseq_1(C,A)
=> ! [D] :
( m2_subset_1(D,k1_numbers,k5_numbers)
=> ( r2_finseq_8(A,B,C,D)
<=> ~ ( ~ r1_xreal_0(k3_finseq_1(C),np__0)
& ! [E] :
( m2_subset_1(E,k1_numbers,k5_numbers)
=> ~ ( r1_xreal_0(D,E)
& r1_xreal_0(E,k3_finseq_1(B))
& k1_jordan3(A,B,E,k1_nat_1(k5_binarith(E,np__1),k3_finseq_1(C))) = C ) ) ) ) ) ) ) ) ).
fof(t20_finseq_8,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ! [B] :
( m2_finseq_1(B,A)
=> ! [C] :
( m2_finseq_1(C,A)
=> ! [D] :
( m2_subset_1(D,k1_numbers,k5_numbers)
=> ( k3_finseq_1(C) = np__0
=> r2_finseq_8(A,B,C,D) ) ) ) ) ) ).
fof(t21_finseq_8,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ! [B] :
( m2_finseq_1(B,A)
=> ! [C] :
( m2_finseq_1(C,A)
=> ! [D] :
( m2_subset_1(D,k1_numbers,k5_numbers)
=> ! [E] :
( m2_subset_1(E,k1_numbers,k5_numbers)
=> ( ( r1_xreal_0(D,E)
& r2_finseq_8(A,B,C,E) )
=> r2_finseq_8(A,B,C,D) ) ) ) ) ) ) ).
fof(t22_finseq_8,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ! [B] :
( m2_finseq_1(B,A)
=> ( r1_xreal_0(np__1,k3_finseq_1(B))
=> r2_finseq_8(A,B,B,np__1) ) ) ) ).
fof(t23_finseq_8,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ! [B] :
( m2_finseq_1(B,A)
=> ! [C] :
( m2_finseq_1(C,A)
=> ( r2_finseq_8(A,B,C,np__0)
=> r2_finseq_8(A,B,C,np__1) ) ) ) ) ).
fof(d8_finseq_8,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ! [B] :
( m2_finseq_1(B,A)
=> ! [C] :
( m2_finseq_1(C,A)
=> ( r3_finseq_8(A,B,C)
<=> ( ~ r1_xreal_0(k3_finseq_1(C),np__0)
=> ( r1_xreal_0(np__1,k3_finseq_1(B))
& k1_jordan3(A,B,np__1,k3_finseq_1(C)) = C ) ) ) ) ) ) ).
fof(t24_finseq_8,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ! [B] :
( m2_finseq_1(B,A)
=> ! [C] :
( m2_finseq_1(C,A)
=> ( k3_finseq_1(C) = np__0
=> r3_finseq_8(A,B,C) ) ) ) ) ).
fof(t25_finseq_8,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ! [B] :
( m2_finseq_1(B,A)
=> r3_finseq_8(A,B,B) ) ) ).
fof(t26_finseq_8,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ! [B] :
( m2_finseq_1(B,A)
=> ! [C] :
( m2_finseq_1(C,A)
=> ( r3_finseq_8(A,B,C)
=> r1_xreal_0(k3_finseq_1(C),k3_finseq_1(B)) ) ) ) ) ).
fof(t27_finseq_8,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ! [B] :
( m2_finseq_1(B,A)
=> ! [C] :
( m2_finseq_1(C,A)
=> ( r3_finseq_8(A,B,C)
=> ( r1_xreal_0(k3_finseq_1(C),np__0)
| k1_funct_1(C,np__1) = k1_funct_1(B,np__1) ) ) ) ) ) ).
fof(d9_finseq_8,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ! [B] :
( m2_finseq_1(B,A)
=> ! [C] :
( m2_finseq_1(C,A)
=> ( r4_finseq_8(A,B,C)
<=> r3_finseq_8(A,k4_finseq_5(A,B),k4_finseq_5(A,C)) ) ) ) ) ).
fof(t28_finseq_8,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ! [B] :
( m2_finseq_1(B,A)
=> ! [C] :
( m2_finseq_1(C,A)
=> ( k3_finseq_1(C) = np__0
=> r4_finseq_8(A,B,C) ) ) ) ) ).
fof(t29_finseq_8,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ! [B] :
( m2_finseq_1(B,A)
=> ! [C] :
( m2_finseq_1(C,A)
=> ( r4_finseq_8(A,B,C)
=> r1_xreal_0(k3_finseq_1(C),k3_finseq_1(B)) ) ) ) ) ).
fof(t30_finseq_8,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ! [B] :
( m2_finseq_1(B,A)
=> ! [C] :
( m2_finseq_1(C,A)
=> ( r4_finseq_8(A,B,C)
=> ( r1_xreal_0(k3_finseq_1(C),np__0)
| ( r1_xreal_0(k3_finseq_1(C),k3_finseq_1(B))
& k1_jordan3(A,B,k5_binarith(k1_nat_1(k3_finseq_1(B),np__1),k3_finseq_1(C)),k3_finseq_1(B)) = C ) ) ) ) ) ) ).
fof(t31_finseq_8,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ! [B] :
( m2_finseq_1(B,A)
=> ! [C] :
( m2_finseq_1(C,A)
=> ( ( ~ r1_xreal_0(k3_finseq_1(C),np__0)
=> ( r1_xreal_0(k3_finseq_1(C),k3_finseq_1(B))
& k1_jordan3(A,B,k5_binarith(k1_nat_1(k3_finseq_1(B),np__1),k3_finseq_1(C)),k3_finseq_1(B)) = C ) )
=> r4_finseq_8(A,B,C) ) ) ) ) ).
fof(t32_finseq_8,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ! [B] :
( m2_finseq_1(B,A)
=> ! [C] :
( m2_finseq_1(C,A)
=> ( k3_finseq_1(C) = np__0
=> r3_finseq_8(A,B,C) ) ) ) ) ).
fof(t33_finseq_8,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ! [B] :
( m2_finseq_1(B,A)
=> ! [C] :
( m2_finseq_1(C,A)
=> ( ( r1_xreal_0(np__1,k3_finseq_1(B))
& r3_finseq_8(A,B,C) )
=> r2_finseq_8(A,B,C,np__1) ) ) ) ) ).
fof(t34_finseq_8,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ! [B] :
( m2_finseq_1(B,A)
=> ! [C] :
( m2_finseq_1(C,A)
=> ! [D] :
( m2_subset_1(D,k1_numbers,k5_numbers)
=> ( ~ r2_finseq_8(A,B,C,D)
=> ! [E] :
( m2_subset_1(E,k1_numbers,k5_numbers)
=> ~ ( r1_xreal_0(D,E)
& ~ r1_xreal_0(E,np__0)
& k1_jordan3(A,B,E,k1_nat_1(k5_binarith(E,np__1),k3_finseq_1(C))) = C ) ) ) ) ) ) ) ).
fof(d10_finseq_8,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ! [B] :
( m2_finseq_1(B,A)
=> ! [C] :
( m2_finseq_1(C,A)
=> ! [D] :
( m2_subset_1(D,k1_numbers,k5_numbers)
=> ! [E] :
( m2_subset_1(E,k1_numbers,k5_numbers)
=> ( E = k7_finseq_8(A,B,C,D)
<=> ( ( E != np__0
=> ( r1_xreal_0(D,E)
& r3_finseq_8(A,k1_rfinseq(A,B,k5_binarith(E,np__1)),C)
& ! [F] :
( m2_subset_1(F,k1_numbers,k5_numbers)
=> ( ( r1_xreal_0(D,F)
& r3_finseq_8(A,k1_rfinseq(A,B,k5_binarith(F,np__1)),C) )
=> ( r1_xreal_0(F,np__0)
| r1_xreal_0(E,F) ) ) ) ) )
& ~ ( E = np__0
& r2_finseq_8(A,B,C,D) ) ) ) ) ) ) ) ) ).
fof(d11_finseq_8,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ! [B] :
( m2_finseq_1(B,A)
=> ! [C] :
( m2_finseq_1(C,A)
=> k8_finseq_8(A,B,C) = k4_finseq_8(A,B,C) ) ) ) ).
fof(d12_finseq_8,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ! [B] :
( m2_finseq_1(B,A)
=> ! [C] :
( m2_finseq_1(C,A)
=> ( r5_finseq_8(A,B,C)
<=> ( ~ r1_xreal_0(k3_finseq_1(C),np__0)
=> ( r1_xreal_0(k3_finseq_1(C),k3_finseq_1(B))
& k7_finseq_8(A,B,C,np__1) = k5_binarith(k1_nat_1(k3_finseq_1(B),np__1),k3_finseq_1(C)) ) ) ) ) ) ) ).
fof(t35_finseq_8,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ! [B] :
( m2_finseq_1(B,A)
=> r5_finseq_8(A,B,B) ) ) ).
fof(dt_k1_finseq_8,axiom,
! [A,B,C] :
( ( m1_finseq_1(B,A)
& m1_finseq_1(C,A) )
=> m2_finseq_1(k1_finseq_8(A,B,C),A) ) ).
fof(redefinition_k1_finseq_8,axiom,
! [A,B,C] :
( ( m1_finseq_1(B,A)
& m1_finseq_1(C,A) )
=> k1_finseq_8(A,B,C) = k7_finseq_1(B,C) ) ).
fof(dt_k2_finseq_8,axiom,
! [A,B,C,D] :
( ( m1_finseq_1(B,A)
& m1_subset_1(C,k5_numbers)
& m1_subset_1(D,k5_numbers) )
=> m2_finseq_1(k2_finseq_8(A,B,C,D),A) ) ).
fof(dt_k3_finseq_8,axiom,
! [A,B,C] :
( ( ~ v1_xboole_0(A)
& m1_finseq_1(B,A)
& m1_finseq_1(C,A) )
=> m2_finseq_1(k3_finseq_8(A,B,C),A) ) ).
fof(dt_k4_finseq_8,axiom,
! [A,B,C] :
( ( ~ v1_xboole_0(A)
& m1_finseq_1(B,A)
& m1_finseq_1(C,A) )
=> m2_finseq_1(k4_finseq_8(A,B,C),A) ) ).
fof(dt_k5_finseq_8,axiom,
! [A,B,C] :
( ( ~ v1_xboole_0(A)
& m1_finseq_1(B,A)
& m1_finseq_1(C,A) )
=> m2_finseq_1(k5_finseq_8(A,B,C),A) ) ).
fof(dt_k6_finseq_8,axiom,
! [A,B,C] :
( ( ~ v1_xboole_0(A)
& m1_finseq_1(B,A)
& m1_finseq_1(C,A) )
=> m2_finseq_1(k6_finseq_8(A,B,C),A) ) ).
fof(dt_k7_finseq_8,axiom,
! [A,B,C,D] :
( ( ~ v1_xboole_0(A)
& m1_finseq_1(B,A)
& m1_finseq_1(C,A)
& m1_subset_1(D,k5_numbers) )
=> m2_subset_1(k7_finseq_8(A,B,C,D),k1_numbers,k5_numbers) ) ).
fof(dt_k8_finseq_8,axiom,
! [A,B,C] :
( ( ~ v1_xboole_0(A)
& m1_finseq_1(B,A)
& m1_finseq_1(C,A) )
=> m2_finseq_1(k8_finseq_8(A,B,C),A) ) ).
%------------------------------------------------------------------------------