SET007 Axioms: SET007+764.ax
%------------------------------------------------------------------------------
% File : SET007+764 : TPTP v9.0.0. Released v3.4.0.
% Domain : Set Theory
% Axioms : Propositional Calculus for Boolean Valued Functions. Part VII
% Version : [Urb08] axioms.
% English :
% Refs : [Mat90] Matuszewski (1990), Formalized Mathematics
% : [Urb07] Urban (2007), MPTP 0.2: Design, Implementation, and In
% : [Urb08] Urban (2006), Email to G. Sutcliffe
% Source : [Urb08]
% Names : bvfunc25 [Urb08]
% Status : Satisfiable
% Syntax : Number of formulae : 47 ( 0 unt; 0 def)
% Number of atoms : 199 ( 47 equ)
% Maximal formula atoms : 6 ( 4 avg)
% Number of connectives : 199 ( 47 ~; 0 |; 1 &)
% ( 1 <=>; 150 =>; 0 <=; 0 <~>)
% Maximal formula depth : 11 ( 7 avg)
% Maximal term depth : 5 ( 1 avg)
% Number of predicates : 4 ( 3 usr; 0 prp; 1-4 aty)
% Number of functors : 10 ( 10 usr; 1 con; 0-3 aty)
% Number of variables : 150 ( 150 !; 0 ?)
% SPC :
% Comments : The individual reference can be found in [Mat90] by looking for
% the name provided by [Urb08].
% : Translated by MPTP from the Mizar Mathematical Library 4.48.930.
% : These set theory axioms are used in encodings of problems in
% various domains, including ALG, CAT, GRP, LAT, SET, and TOP.
%------------------------------------------------------------------------------
fof(t1_bvfunc25,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ! [B] :
( m2_fraenkel(B,A,k6_margrel1,k1_fraenkel(A,k6_margrel1))
=> ! [C] :
( m2_fraenkel(C,A,k6_margrel1,k1_fraenkel(A,k6_margrel1))
=> k5_valuat_1(A,k14_bvfunc_1(A,B,C)) = k6_valuat_1(A,B,k5_valuat_1(A,C)) ) ) ) ).
fof(t2_bvfunc25,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ! [B] :
( m2_fraenkel(B,A,k6_margrel1,k1_fraenkel(A,k6_margrel1))
=> ! [C] :
( m2_fraenkel(C,A,k6_margrel1,k1_fraenkel(A,k6_margrel1))
=> k14_bvfunc_1(A,k14_bvfunc_1(A,k5_valuat_1(A,B),k5_valuat_1(A,C)),k14_bvfunc_1(A,C,B)) = k19_bvfunc_1(A) ) ) ) ).
fof(t3_bvfunc25,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ! [B] :
( m2_fraenkel(B,A,k6_margrel1,k1_fraenkel(A,k6_margrel1))
=> ! [C] :
( m2_fraenkel(C,A,k6_margrel1,k1_fraenkel(A,k6_margrel1))
=> k14_bvfunc_1(A,B,C) = k14_bvfunc_1(A,k5_valuat_1(A,C),k5_valuat_1(A,B)) ) ) ) ).
fof(t4_bvfunc25,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ! [B] :
( m2_fraenkel(B,A,k6_margrel1,k1_fraenkel(A,k6_margrel1))
=> ! [C] :
( m2_fraenkel(C,A,k6_margrel1,k1_fraenkel(A,k6_margrel1))
=> k15_bvfunc_1(A,B,C) = k15_bvfunc_1(A,k5_valuat_1(A,B),k5_valuat_1(A,C)) ) ) ) ).
fof(t5_bvfunc25,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ! [B] :
( m2_fraenkel(B,A,k6_margrel1,k1_fraenkel(A,k6_margrel1))
=> ! [C] :
( m2_fraenkel(C,A,k6_margrel1,k1_fraenkel(A,k6_margrel1))
=> k14_bvfunc_1(A,B,C) = k14_bvfunc_1(A,B,k6_valuat_1(A,B,C)) ) ) ) ).
fof(t6_bvfunc25,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ! [B] :
( m2_fraenkel(B,A,k6_margrel1,k1_fraenkel(A,k6_margrel1))
=> ! [C] :
( m2_fraenkel(C,A,k6_margrel1,k1_fraenkel(A,k6_margrel1))
=> k15_bvfunc_1(A,B,C) = k14_bvfunc_1(A,k8_bvfunc_1(A,B,C),k6_valuat_1(A,B,C)) ) ) ) ).
fof(t7_bvfunc25,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ! [B] :
( m2_fraenkel(B,A,k6_margrel1,k1_fraenkel(A,k6_margrel1))
=> k15_bvfunc_1(A,B,k5_valuat_1(A,B)) = k18_bvfunc_1(A) ) ) ).
fof(t8_bvfunc25,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ! [B] :
( m2_fraenkel(B,A,k6_margrel1,k1_fraenkel(A,k6_margrel1))
=> ! [C] :
( m2_fraenkel(C,A,k6_margrel1,k1_fraenkel(A,k6_margrel1))
=> ! [D] :
( m2_fraenkel(D,A,k6_margrel1,k1_fraenkel(A,k6_margrel1))
=> k14_bvfunc_1(A,B,k14_bvfunc_1(A,C,D)) = k14_bvfunc_1(A,C,k14_bvfunc_1(A,B,D)) ) ) ) ) ).
fof(t9_bvfunc25,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ! [B] :
( m2_fraenkel(B,A,k6_margrel1,k1_fraenkel(A,k6_margrel1))
=> ! [C] :
( m2_fraenkel(C,A,k6_margrel1,k1_fraenkel(A,k6_margrel1))
=> ! [D] :
( m2_fraenkel(D,A,k6_margrel1,k1_fraenkel(A,k6_margrel1))
=> k14_bvfunc_1(A,B,k14_bvfunc_1(A,C,D)) = k14_bvfunc_1(A,k14_bvfunc_1(A,B,C),k14_bvfunc_1(A,B,D)) ) ) ) ) ).
fof(t10_bvfunc25,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ! [B] :
( m2_fraenkel(B,A,k6_margrel1,k1_fraenkel(A,k6_margrel1))
=> ! [C] :
( m2_fraenkel(C,A,k6_margrel1,k1_fraenkel(A,k6_margrel1))
=> k15_bvfunc_1(A,B,C) = k9_bvfunc_1(A,B,k5_valuat_1(A,C)) ) ) ) ).
fof(t11_bvfunc25,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ! [B] :
( m2_fraenkel(B,A,k6_margrel1,k1_fraenkel(A,k6_margrel1))
=> ! [C] :
( m2_fraenkel(C,A,k6_margrel1,k1_fraenkel(A,k6_margrel1))
=> ! [D] :
( m2_fraenkel(D,A,k6_margrel1,k1_fraenkel(A,k6_margrel1))
=> k6_valuat_1(A,B,k9_bvfunc_1(A,C,D)) = k9_bvfunc_1(A,k6_valuat_1(A,B,C),k6_valuat_1(A,B,D)) ) ) ) ) ).
fof(t12_bvfunc25,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ! [B] :
( m2_fraenkel(B,A,k6_margrel1,k1_fraenkel(A,k6_margrel1))
=> ! [C] :
( m2_fraenkel(C,A,k6_margrel1,k1_fraenkel(A,k6_margrel1))
=> k15_bvfunc_1(A,B,C) = k5_valuat_1(A,k9_bvfunc_1(A,B,C)) ) ) ) ).
fof(t13_bvfunc25,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ! [B] :
( m2_fraenkel(B,A,k6_margrel1,k1_fraenkel(A,k6_margrel1))
=> k9_bvfunc_1(A,B,B) = k18_bvfunc_1(A) ) ) ).
fof(t14_bvfunc25,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ! [B] :
( m2_fraenkel(B,A,k6_margrel1,k1_fraenkel(A,k6_margrel1))
=> k9_bvfunc_1(A,B,k5_valuat_1(A,B)) = k19_bvfunc_1(A) ) ) ).
fof(t15_bvfunc25,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ! [B] :
( m2_fraenkel(B,A,k6_margrel1,k1_fraenkel(A,k6_margrel1))
=> ! [C] :
( m2_fraenkel(C,A,k6_margrel1,k1_fraenkel(A,k6_margrel1))
=> k14_bvfunc_1(A,k14_bvfunc_1(A,B,C),k14_bvfunc_1(A,C,B)) = k14_bvfunc_1(A,C,B) ) ) ) ).
fof(t16_bvfunc25,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ! [B] :
( m2_fraenkel(B,A,k6_margrel1,k1_fraenkel(A,k6_margrel1))
=> ! [C] :
( m2_fraenkel(C,A,k6_margrel1,k1_fraenkel(A,k6_margrel1))
=> k6_valuat_1(A,k8_bvfunc_1(A,B,C),k8_bvfunc_1(A,k5_valuat_1(A,B),k5_valuat_1(A,C))) = k8_bvfunc_1(A,k6_valuat_1(A,k5_valuat_1(A,B),C),k6_valuat_1(A,B,k5_valuat_1(A,C))) ) ) ) ).
fof(t17_bvfunc25,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ! [B] :
( m2_fraenkel(B,A,k6_margrel1,k1_fraenkel(A,k6_margrel1))
=> ! [C] :
( m2_fraenkel(C,A,k6_margrel1,k1_fraenkel(A,k6_margrel1))
=> k8_bvfunc_1(A,k6_valuat_1(A,B,C),k6_valuat_1(A,k5_valuat_1(A,B),k5_valuat_1(A,C))) = k6_valuat_1(A,k8_bvfunc_1(A,k5_valuat_1(A,B),C),k8_bvfunc_1(A,B,k5_valuat_1(A,C))) ) ) ) ).
fof(t18_bvfunc25,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ! [B] :
( m2_fraenkel(B,A,k6_margrel1,k1_fraenkel(A,k6_margrel1))
=> ! [C] :
( m2_fraenkel(C,A,k6_margrel1,k1_fraenkel(A,k6_margrel1))
=> ! [D] :
( m2_fraenkel(D,A,k6_margrel1,k1_fraenkel(A,k6_margrel1))
=> k9_bvfunc_1(A,B,k9_bvfunc_1(A,C,D)) = k9_bvfunc_1(A,k9_bvfunc_1(A,B,C),D) ) ) ) ) ).
fof(t19_bvfunc25,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ! [B] :
( m2_fraenkel(B,A,k6_margrel1,k1_fraenkel(A,k6_margrel1))
=> ! [C] :
( m2_fraenkel(C,A,k6_margrel1,k1_fraenkel(A,k6_margrel1))
=> ! [D] :
( m2_fraenkel(D,A,k6_margrel1,k1_fraenkel(A,k6_margrel1))
=> k15_bvfunc_1(A,B,k15_bvfunc_1(A,C,D)) = k15_bvfunc_1(A,k15_bvfunc_1(A,B,C),D) ) ) ) ) ).
fof(t20_bvfunc25,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ! [B] :
( m2_fraenkel(B,A,k6_margrel1,k1_fraenkel(A,k6_margrel1))
=> k14_bvfunc_1(A,k5_valuat_1(A,k5_valuat_1(A,B)),B) = k19_bvfunc_1(A) ) ) ).
fof(t21_bvfunc25,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ! [B] :
( m2_fraenkel(B,A,k6_margrel1,k1_fraenkel(A,k6_margrel1))
=> ! [C] :
( m2_fraenkel(C,A,k6_margrel1,k1_fraenkel(A,k6_margrel1))
=> k14_bvfunc_1(A,k6_valuat_1(A,k14_bvfunc_1(A,B,C),B),C) = k19_bvfunc_1(A) ) ) ) ).
fof(t22_bvfunc25,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ! [B] :
( m2_fraenkel(B,A,k6_margrel1,k1_fraenkel(A,k6_margrel1))
=> k14_bvfunc_1(A,B,k14_bvfunc_1(A,k5_valuat_1(A,B),B)) = k19_bvfunc_1(A) ) ) ).
fof(t23_bvfunc25,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ! [B] :
( m2_fraenkel(B,A,k6_margrel1,k1_fraenkel(A,k6_margrel1))
=> k15_bvfunc_1(A,k14_bvfunc_1(A,k5_valuat_1(A,B),B),B) = k19_bvfunc_1(A) ) ) ).
fof(t24_bvfunc25,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ! [B] :
( m2_fraenkel(B,A,k6_margrel1,k1_fraenkel(A,k6_margrel1))
=> ! [C] :
( m2_fraenkel(C,A,k6_margrel1,k1_fraenkel(A,k6_margrel1))
=> k8_bvfunc_1(A,B,k14_bvfunc_1(A,B,C)) = k19_bvfunc_1(A) ) ) ) ).
fof(t25_bvfunc25,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ! [B] :
( m2_fraenkel(B,A,k6_margrel1,k1_fraenkel(A,k6_margrel1))
=> ! [C] :
( m2_fraenkel(C,A,k6_margrel1,k1_fraenkel(A,k6_margrel1))
=> ! [D] :
( m2_fraenkel(D,A,k6_margrel1,k1_fraenkel(A,k6_margrel1))
=> k8_bvfunc_1(A,k14_bvfunc_1(A,B,C),k14_bvfunc_1(A,D,B)) = k19_bvfunc_1(A) ) ) ) ) ).
fof(t26_bvfunc25,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ! [B] :
( m2_fraenkel(B,A,k6_margrel1,k1_fraenkel(A,k6_margrel1))
=> ! [C] :
( m2_fraenkel(C,A,k6_margrel1,k1_fraenkel(A,k6_margrel1))
=> k8_bvfunc_1(A,k14_bvfunc_1(A,B,C),k14_bvfunc_1(A,k5_valuat_1(A,B),C)) = k19_bvfunc_1(A) ) ) ) ).
fof(t27_bvfunc25,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ! [B] :
( m2_fraenkel(B,A,k6_margrel1,k1_fraenkel(A,k6_margrel1))
=> ! [C] :
( m2_fraenkel(C,A,k6_margrel1,k1_fraenkel(A,k6_margrel1))
=> k8_bvfunc_1(A,k14_bvfunc_1(A,B,C),k14_bvfunc_1(A,B,k5_valuat_1(A,C))) = k19_bvfunc_1(A) ) ) ) ).
fof(t28_bvfunc25,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ! [B] :
( m2_fraenkel(B,A,k6_margrel1,k1_fraenkel(A,k6_margrel1))
=> ! [C] :
( m2_fraenkel(C,A,k6_margrel1,k1_fraenkel(A,k6_margrel1))
=> k14_bvfunc_1(A,k5_valuat_1(A,B),k15_bvfunc_1(A,k5_valuat_1(A,C),k14_bvfunc_1(A,C,B))) = k19_bvfunc_1(A) ) ) ) ).
fof(t29_bvfunc25,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ! [B] :
( m2_fraenkel(B,A,k6_margrel1,k1_fraenkel(A,k6_margrel1))
=> ! [C] :
( m2_fraenkel(C,A,k6_margrel1,k1_fraenkel(A,k6_margrel1))
=> ! [D] :
( m2_fraenkel(D,A,k6_margrel1,k1_fraenkel(A,k6_margrel1))
=> k14_bvfunc_1(A,k14_bvfunc_1(A,B,C),k14_bvfunc_1(A,k14_bvfunc_1(A,k14_bvfunc_1(A,B,D),C),C)) = k19_bvfunc_1(A) ) ) ) ) ).
fof(t30_bvfunc25,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ! [B] :
( m2_fraenkel(B,A,k6_margrel1,k1_fraenkel(A,k6_margrel1))
=> ! [C] :
( m2_fraenkel(C,A,k6_margrel1,k1_fraenkel(A,k6_margrel1))
=> k14_bvfunc_1(A,B,C) = k15_bvfunc_1(A,B,k6_valuat_1(A,B,C)) ) ) ) ).
fof(t31_bvfunc25,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ! [B] :
( m2_fraenkel(B,A,k6_margrel1,k1_fraenkel(A,k6_margrel1))
=> ! [C] :
( m2_fraenkel(C,A,k6_margrel1,k1_fraenkel(A,k6_margrel1))
=> ( ( k14_bvfunc_1(A,B,C) = k19_bvfunc_1(A)
& k14_bvfunc_1(A,C,B) = k19_bvfunc_1(A) )
<=> B = C ) ) ) ) ).
fof(t32_bvfunc25,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ! [B] :
( m2_fraenkel(B,A,k6_margrel1,k1_fraenkel(A,k6_margrel1))
=> B = k14_bvfunc_1(A,k5_valuat_1(A,B),B) ) ) ).
fof(t33_bvfunc25,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ! [B] :
( m2_fraenkel(B,A,k6_margrel1,k1_fraenkel(A,k6_margrel1))
=> ! [C] :
( m2_fraenkel(C,A,k6_margrel1,k1_fraenkel(A,k6_margrel1))
=> k14_bvfunc_1(A,B,k14_bvfunc_1(A,k14_bvfunc_1(A,B,C),B)) = k19_bvfunc_1(A) ) ) ) ).
fof(t34_bvfunc25,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ! [B] :
( m2_fraenkel(B,A,k6_margrel1,k1_fraenkel(A,k6_margrel1))
=> ! [C] :
( m2_fraenkel(C,A,k6_margrel1,k1_fraenkel(A,k6_margrel1))
=> B = k14_bvfunc_1(A,k14_bvfunc_1(A,B,C),B) ) ) ) ).
fof(t35_bvfunc25,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ! [B] :
( m2_fraenkel(B,A,k6_margrel1,k1_fraenkel(A,k6_margrel1))
=> ! [C] :
( m2_fraenkel(C,A,k6_margrel1,k1_fraenkel(A,k6_margrel1))
=> B = k6_valuat_1(A,k14_bvfunc_1(A,C,B),k14_bvfunc_1(A,k5_valuat_1(A,C),B)) ) ) ) ).
fof(t36_bvfunc25,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ! [B] :
( m2_fraenkel(B,A,k6_margrel1,k1_fraenkel(A,k6_margrel1))
=> ! [C] :
( m2_fraenkel(C,A,k6_margrel1,k1_fraenkel(A,k6_margrel1))
=> k6_valuat_1(A,B,C) = k5_valuat_1(A,k14_bvfunc_1(A,B,k5_valuat_1(A,C))) ) ) ) ).
fof(t37_bvfunc25,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ! [B] :
( m2_fraenkel(B,A,k6_margrel1,k1_fraenkel(A,k6_margrel1))
=> ! [C] :
( m2_fraenkel(C,A,k6_margrel1,k1_fraenkel(A,k6_margrel1))
=> k8_bvfunc_1(A,B,C) = k14_bvfunc_1(A,k5_valuat_1(A,B),C) ) ) ) ).
fof(t38_bvfunc25,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ! [B] :
( m2_fraenkel(B,A,k6_margrel1,k1_fraenkel(A,k6_margrel1))
=> ! [C] :
( m2_fraenkel(C,A,k6_margrel1,k1_fraenkel(A,k6_margrel1))
=> k8_bvfunc_1(A,B,C) = k14_bvfunc_1(A,k14_bvfunc_1(A,B,C),C) ) ) ) ).
fof(t39_bvfunc25,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ! [B] :
( m2_fraenkel(B,A,k6_margrel1,k1_fraenkel(A,k6_margrel1))
=> ! [C] :
( m2_fraenkel(C,A,k6_margrel1,k1_fraenkel(A,k6_margrel1))
=> k14_bvfunc_1(A,k14_bvfunc_1(A,B,C),k14_bvfunc_1(A,B,B)) = k19_bvfunc_1(A) ) ) ) ).
fof(t40_bvfunc25,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ! [B] :
( m2_fraenkel(B,A,k6_margrel1,k1_fraenkel(A,k6_margrel1))
=> ! [C] :
( m2_fraenkel(C,A,k6_margrel1,k1_fraenkel(A,k6_margrel1))
=> ! [D] :
( m2_fraenkel(D,A,k6_margrel1,k1_fraenkel(A,k6_margrel1))
=> ! [E] :
( m2_fraenkel(E,A,k6_margrel1,k1_fraenkel(A,k6_margrel1))
=> k14_bvfunc_1(A,k14_bvfunc_1(A,B,k14_bvfunc_1(A,C,D)),k14_bvfunc_1(A,k14_bvfunc_1(A,E,C),k14_bvfunc_1(A,B,k14_bvfunc_1(A,E,D)))) = k19_bvfunc_1(A) ) ) ) ) ) ).
fof(t41_bvfunc25,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ! [B] :
( m2_fraenkel(B,A,k6_margrel1,k1_fraenkel(A,k6_margrel1))
=> ! [C] :
( m2_fraenkel(C,A,k6_margrel1,k1_fraenkel(A,k6_margrel1))
=> ! [D] :
( m2_fraenkel(D,A,k6_margrel1,k1_fraenkel(A,k6_margrel1))
=> k14_bvfunc_1(A,k6_valuat_1(A,k6_valuat_1(A,k14_bvfunc_1(A,B,C),B),D),C) = k19_bvfunc_1(A) ) ) ) ) ).
fof(t42_bvfunc25,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ! [B] :
( m2_fraenkel(B,A,k6_margrel1,k1_fraenkel(A,k6_margrel1))
=> ! [C] :
( m2_fraenkel(C,A,k6_margrel1,k1_fraenkel(A,k6_margrel1))
=> ! [D] :
( m2_fraenkel(D,A,k6_margrel1,k1_fraenkel(A,k6_margrel1))
=> k14_bvfunc_1(A,k14_bvfunc_1(A,B,C),k14_bvfunc_1(A,k6_valuat_1(A,D,B),C)) = k19_bvfunc_1(A) ) ) ) ) ).
fof(t43_bvfunc25,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ! [B] :
( m2_fraenkel(B,A,k6_margrel1,k1_fraenkel(A,k6_margrel1))
=> ! [C] :
( m2_fraenkel(C,A,k6_margrel1,k1_fraenkel(A,k6_margrel1))
=> ! [D] :
( m2_fraenkel(D,A,k6_margrel1,k1_fraenkel(A,k6_margrel1))
=> k14_bvfunc_1(A,k14_bvfunc_1(A,k6_valuat_1(A,B,C),D),k14_bvfunc_1(A,k6_valuat_1(A,B,C),k6_valuat_1(A,D,C))) = k19_bvfunc_1(A) ) ) ) ) ).
fof(t44_bvfunc25,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ! [B] :
( m2_fraenkel(B,A,k6_margrel1,k1_fraenkel(A,k6_margrel1))
=> ! [C] :
( m2_fraenkel(C,A,k6_margrel1,k1_fraenkel(A,k6_margrel1))
=> ! [D] :
( m2_fraenkel(D,A,k6_margrel1,k1_fraenkel(A,k6_margrel1))
=> k14_bvfunc_1(A,k14_bvfunc_1(A,B,C),k14_bvfunc_1(A,k6_valuat_1(A,B,D),k6_valuat_1(A,C,D))) = k19_bvfunc_1(A) ) ) ) ) ).
fof(t45_bvfunc25,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ! [B] :
( m2_fraenkel(B,A,k6_margrel1,k1_fraenkel(A,k6_margrel1))
=> ! [C] :
( m2_fraenkel(C,A,k6_margrel1,k1_fraenkel(A,k6_margrel1))
=> ! [D] :
( m2_fraenkel(D,A,k6_margrel1,k1_fraenkel(A,k6_margrel1))
=> k14_bvfunc_1(A,k6_valuat_1(A,k14_bvfunc_1(A,B,C),k6_valuat_1(A,B,D)),k6_valuat_1(A,C,D)) = k19_bvfunc_1(A) ) ) ) ) ).
fof(t46_bvfunc25,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ! [B] :
( m2_fraenkel(B,A,k6_margrel1,k1_fraenkel(A,k6_margrel1))
=> ! [C] :
( m2_fraenkel(C,A,k6_margrel1,k1_fraenkel(A,k6_margrel1))
=> ! [D] :
( m2_fraenkel(D,A,k6_margrel1,k1_fraenkel(A,k6_margrel1))
=> r1_bvfunc_1(A,k6_valuat_1(A,k6_valuat_1(A,B,k14_bvfunc_1(A,B,C)),k14_bvfunc_1(A,C,D)),D) ) ) ) ) ).
fof(t47_bvfunc25,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ! [B] :
( m2_fraenkel(B,A,k6_margrel1,k1_fraenkel(A,k6_margrel1))
=> ! [C] :
( m2_fraenkel(C,A,k6_margrel1,k1_fraenkel(A,k6_margrel1))
=> ! [D] :
( m2_fraenkel(D,A,k6_margrel1,k1_fraenkel(A,k6_margrel1))
=> r1_bvfunc_1(A,k6_valuat_1(A,k6_valuat_1(A,k8_bvfunc_1(A,B,C),k14_bvfunc_1(A,B,D)),k14_bvfunc_1(A,C,D)),k14_bvfunc_1(A,k5_valuat_1(A,B),k8_bvfunc_1(A,C,D))) ) ) ) ) ).
%------------------------------------------------------------------------------