SET007 Axioms: SET007+705.ax
%------------------------------------------------------------------------------
% File : SET007+705 : TPTP v9.0.0. Released v3.4.0.
% Domain : Set Theory
% Axioms : Pythagorean Triples
% Version : [Urb08] axioms.
% English :
% Refs : [Mat90] Matuszewski (1990), Formalized Mathematics
% : [Urb07] Urban (2007), MPTP 0.2: Design, Implementation, and In
% : [Urb08] Urban (2006), Email to G. Sutcliffe
% Source : [Urb08]
% Names : pythtrip [Urb08]
% Status : Satisfiable
% Syntax : Number of formulae : 39 ( 2 unt; 0 def)
% Number of atoms : 208 ( 21 equ)
% Maximal formula atoms : 12 ( 5 avg)
% Number of connectives : 197 ( 28 ~; 1 |; 95 &)
% ( 12 <=>; 61 =>; 0 <=; 0 <~>)
% Maximal formula depth : 19 ( 8 avg)
% Maximal term depth : 5 ( 1 avg)
% Number of predicates : 22 ( 21 usr; 0 prp; 1-3 aty)
% Number of functors : 21 ( 21 usr; 9 con; 0-4 aty)
% Number of variables : 75 ( 58 !; 17 ?)
% SPC :
% Comments : The individual reference can be found in [Mat90] by looking for
% the name provided by [Urb08].
% : Translated by MPTP from the Mizar Mathematical Library 4.48.930.
% : These set theory axioms are used in encodings of problems in
% various domains, including ALG, CAT, GRP, LAT, SET, and TOP.
%------------------------------------------------------------------------------
fof(cc1_pythtrip,axiom,
! [A] :
( v1_pythtrip(A)
=> ( v4_ordinal2(A)
& v1_xcmplx_0(A)
& v1_xreal_0(A)
& v1_int_1(A) ) ) ).
fof(fc1_pythtrip,axiom,
! [A] :
( m1_subset_1(A,k5_numbers)
=> ( v4_ordinal2(k5_square_1(A))
& v1_xcmplx_0(k5_square_1(A))
& v1_xreal_0(k5_square_1(A))
& v1_int_1(k5_square_1(A))
& v1_pythtrip(k5_square_1(A)) ) ) ).
fof(rc1_pythtrip,axiom,
? [A] :
( m1_subset_1(A,k5_numbers)
& v1_ordinal1(A)
& v2_ordinal1(A)
& v3_ordinal1(A)
& v4_ordinal2(A)
& v1_xcmplx_0(A)
& v1_abian(A)
& v1_xreal_0(A)
& ~ v3_xreal_0(A)
& v1_int_1(A)
& v1_pythtrip(A) ) ).
fof(rc2_pythtrip,axiom,
? [A] :
( m1_subset_1(A,k5_numbers)
& v1_ordinal1(A)
& v2_ordinal1(A)
& v3_ordinal1(A)
& v4_ordinal2(A)
& v1_xcmplx_0(A)
& ~ v1_abian(A)
& v1_xreal_0(A)
& ~ v3_xreal_0(A)
& v1_int_1(A)
& v1_pythtrip(A) ) ).
fof(rc3_pythtrip,axiom,
? [A] :
( v4_ordinal2(A)
& v1_xcmplx_0(A)
& v1_abian(A)
& v1_xreal_0(A)
& v1_int_1(A)
& v1_pythtrip(A) ) ).
fof(rc4_pythtrip,axiom,
? [A] :
( v4_ordinal2(A)
& v1_xcmplx_0(A)
& ~ v1_abian(A)
& v1_xreal_0(A)
& v1_int_1(A)
& v1_pythtrip(A) ) ).
fof(fc2_pythtrip,axiom,
! [A,B] :
( ( v1_pythtrip(A)
& v1_pythtrip(B) )
=> ( v4_ordinal2(k3_xcmplx_0(A,B))
& v1_xcmplx_0(k3_xcmplx_0(A,B))
& v1_xreal_0(k3_xcmplx_0(A,B))
& v1_int_1(k3_xcmplx_0(A,B))
& v1_pythtrip(k3_xcmplx_0(A,B)) ) ) ).
fof(fc3_pythtrip,axiom,
! [A] :
( ( v1_abian(A)
& v1_int_1(A) )
=> v1_abian(k5_square_1(A)) ) ).
fof(fc4_pythtrip,axiom,
! [A] :
( ( ~ v1_abian(A)
& v1_int_1(A) )
=> ~ v1_abian(k5_square_1(A)) ) ).
fof(fc5_pythtrip,axiom,
! [A,B] :
( ( ~ v1_abian(A)
& v1_pythtrip(A)
& ~ v1_abian(B)
& v1_pythtrip(B) )
=> ( v1_xcmplx_0(k2_xcmplx_0(A,B))
& v1_abian(k2_xcmplx_0(A,B))
& v1_xreal_0(k2_xcmplx_0(A,B))
& v1_int_1(k2_xcmplx_0(A,B))
& ~ v1_pythtrip(k2_xcmplx_0(A,B)) ) ) ).
fof(cc2_pythtrip,axiom,
! [A] :
( m1_pythtrip(A)
=> v1_finset_1(A) ) ).
fof(rc5_pythtrip,axiom,
? [A] :
( m1_pythtrip(A)
& v1_finset_1(A)
& ~ v2_pythtrip(A)
& v3_pythtrip(A) ) ).
fof(d1_pythtrip,axiom,
! [A] :
( m2_subset_1(A,k1_numbers,k5_numbers)
=> ! [B] :
( m2_subset_1(B,k1_numbers,k5_numbers)
=> ( r2_int_2(A,B)
<=> ! [C] :
( m2_subset_1(C,k1_numbers,k5_numbers)
=> ( ( r1_nat_1(C,A)
& r1_nat_1(C,B) )
=> C = np__1 ) ) ) ) ) ).
fof(d2_pythtrip,axiom,
! [A] :
( m2_subset_1(A,k1_numbers,k5_numbers)
=> ! [B] :
( m2_subset_1(B,k1_numbers,k5_numbers)
=> ( r2_int_2(A,B)
<=> ! [C] :
( ( v1_int_2(C)
& m2_subset_1(C,k1_numbers,k5_numbers) )
=> ~ ( r1_nat_1(C,A)
& r1_nat_1(C,B) ) ) ) ) ) ).
fof(d3_pythtrip,axiom,
! [A] :
( v1_pythtrip(A)
<=> ? [B] :
( m2_subset_1(B,k1_numbers,k5_numbers)
& A = k2_pepin(B) ) ) ).
fof(t1_pythtrip,axiom,
! [A] :
( m2_subset_1(A,k1_numbers,k5_numbers)
=> ! [B] :
( m2_subset_1(B,k1_numbers,k5_numbers)
=> ( ( v1_pythtrip(k2_nat_1(A,B))
& r2_int_2(A,B) )
=> ( v1_pythtrip(A)
& v1_pythtrip(B) ) ) ) ) ).
fof(t2_pythtrip,axiom,
! [A] :
( v1_int_1(A)
=> ( v1_abian(A)
<=> v1_abian(k2_pepin(A)) ) ) ).
fof(t3_pythtrip,axiom,
! [A] :
( v1_int_1(A)
=> ( v1_abian(A)
=> k4_nat_1(k2_pepin(A),np__4) = np__0 ) ) ).
fof(t4_pythtrip,axiom,
! [A] :
( v1_int_1(A)
=> ( ~ v1_abian(A)
=> k4_nat_1(k2_pepin(A),np__4) = np__1 ) ) ).
fof(t5_pythtrip,axiom,
! [A] :
( m2_subset_1(A,k1_numbers,k5_numbers)
=> ! [B] :
( m2_subset_1(B,k1_numbers,k5_numbers)
=> ( k2_pepin(A) = k2_pepin(B)
=> A = B ) ) ) ).
fof(t6_pythtrip,axiom,
! [A] :
( m2_subset_1(A,k1_numbers,k5_numbers)
=> ! [B] :
( m2_subset_1(B,k1_numbers,k5_numbers)
=> ( r1_nat_1(A,B)
<=> r1_nat_1(k2_pepin(A),k2_pepin(B)) ) ) ) ).
fof(t7_pythtrip,axiom,
! [A] :
( m2_subset_1(A,k1_numbers,k5_numbers)
=> ! [B] :
( m2_subset_1(B,k1_numbers,k5_numbers)
=> ! [C] :
( m2_subset_1(C,k1_numbers,k5_numbers)
=> ( ( r1_nat_1(A,B)
| C = np__0 )
<=> r1_nat_1(k2_nat_1(C,A),k2_nat_1(C,B)) ) ) ) ) ).
fof(t8_pythtrip,axiom,
! [A] :
( m2_subset_1(A,k1_numbers,k5_numbers)
=> ! [B] :
( m2_subset_1(B,k1_numbers,k5_numbers)
=> ! [C] :
( m2_subset_1(C,k1_numbers,k5_numbers)
=> k6_nat_1(k2_nat_1(A,B),k2_nat_1(A,C)) = k2_nat_1(A,k6_nat_1(B,C)) ) ) ) ).
fof(t9_pythtrip,axiom,
! [A] :
~ ( ! [B] :
( m2_subset_1(B,k1_numbers,k5_numbers)
=> ? [C] :
( m2_subset_1(C,k1_numbers,k5_numbers)
& r1_xreal_0(B,C)
& r2_hidden(C,A) ) )
& v1_finset_1(A) ) ).
fof(t10_pythtrip,axiom,
! [A] :
( m2_subset_1(A,k1_numbers,k5_numbers)
=> ! [B] :
( m2_subset_1(B,k1_numbers,k5_numbers)
=> ~ ( r2_int_2(A,B)
& v1_abian(A)
& v1_abian(B) ) ) ) ).
fof(t11_pythtrip,axiom,
! [A] :
( m2_subset_1(A,k1_numbers,k5_numbers)
=> ! [B] :
( m2_subset_1(B,k1_numbers,k5_numbers)
=> ! [C] :
( m2_subset_1(C,k1_numbers,k5_numbers)
=> ~ ( k1_nat_1(k2_pepin(A),k2_pepin(B)) = k2_pepin(C)
& r2_int_2(A,B)
& ~ v1_abian(A)
& ! [D] :
( m2_subset_1(D,k1_numbers,k5_numbers)
=> ! [E] :
( m2_subset_1(E,k1_numbers,k5_numbers)
=> ~ ( r1_xreal_0(D,E)
& A = k5_real_1(k2_pepin(E),k2_pepin(D))
& B = k2_nat_1(k2_nat_1(np__2,D),E)
& C = k1_nat_1(k2_pepin(E),k2_pepin(D)) ) ) ) ) ) ) ) ).
fof(t12_pythtrip,axiom,
! [A] :
( m2_subset_1(A,k1_numbers,k5_numbers)
=> ! [B] :
( m2_subset_1(B,k1_numbers,k5_numbers)
=> ! [C] :
( m2_subset_1(C,k1_numbers,k5_numbers)
=> ! [D] :
( m2_subset_1(D,k1_numbers,k5_numbers)
=> ! [E] :
( m2_subset_1(E,k1_numbers,k5_numbers)
=> ( ( A = k5_real_1(k2_pepin(B),k2_pepin(C))
& D = k2_nat_1(k2_nat_1(np__2,C),B)
& E = k1_nat_1(k2_pepin(B),k2_pepin(C)) )
=> k1_nat_1(k2_pepin(A),k2_pepin(D)) = k2_pepin(E) ) ) ) ) ) ) ).
fof(d4_pythtrip,axiom,
! [A] :
( m1_subset_1(A,k1_zfmisc_1(k5_numbers))
=> ( m1_pythtrip(A)
<=> ? [B] :
( m2_subset_1(B,k1_numbers,k5_numbers)
& ? [C] :
( m2_subset_1(C,k1_numbers,k5_numbers)
& ? [D] :
( m2_subset_1(D,k1_numbers,k5_numbers)
& k1_nat_1(k2_pepin(B),k2_pepin(C)) = k2_pepin(D)
& A = k8_domain_1(k5_numbers,B,C,D) ) ) ) ) ) ).
fof(d5_pythtrip,axiom,
! [A] :
( m1_subset_1(A,k1_zfmisc_1(k5_numbers))
=> ( m1_pythtrip(A)
<=> ? [B] :
( m2_subset_1(B,k1_numbers,k5_numbers)
& ? [C] :
( m2_subset_1(C,k1_numbers,k5_numbers)
& ? [D] :
( m2_subset_1(D,k1_numbers,k5_numbers)
& r1_xreal_0(C,D)
& A = k8_domain_1(k1_numbers,k4_real_1(B,k5_real_1(k2_pepin(D),k2_pepin(C))),k2_nat_1(B,k2_nat_1(k2_nat_1(np__2,C),D)),k2_nat_1(B,k1_nat_1(k2_pepin(D),k2_pepin(C)))) ) ) ) ) ) ).
fof(d6_pythtrip,axiom,
! [A] :
( m1_pythtrip(A)
=> ( v2_pythtrip(A)
<=> r2_hidden(np__0,A) ) ) ).
fof(t13_pythtrip,axiom,
! [A] :
( m2_subset_1(A,k1_numbers,k5_numbers)
=> ~ ( ~ r1_xreal_0(A,np__2)
& ! [B] :
( m1_pythtrip(B)
=> ~ ( ~ v2_pythtrip(B)
& r2_hidden(A,B) ) ) ) ) ).
fof(d7_pythtrip,axiom,
! [A] :
( m1_pythtrip(A)
=> ( v3_pythtrip(A)
<=> ! [B] :
( m2_subset_1(B,k1_numbers,k5_numbers)
=> ( ! [C] :
( m2_subset_1(C,k1_numbers,k5_numbers)
=> ( r2_hidden(C,A)
=> r1_nat_1(B,C) ) )
=> B = np__1 ) ) ) ) ).
fof(d8_pythtrip,axiom,
! [A] :
( m1_pythtrip(A)
=> ( v3_pythtrip(A)
<=> ? [B] :
( m2_subset_1(B,k1_numbers,k5_numbers)
& ? [C] :
( m2_subset_1(C,k1_numbers,k5_numbers)
& r2_hidden(B,A)
& r2_hidden(C,A)
& r2_int_2(B,C) ) ) ) ) ).
fof(t14_pythtrip,axiom,
! [A] :
( m2_subset_1(A,k1_numbers,k5_numbers)
=> ~ ( ~ r1_xreal_0(A,np__0)
& ! [B] :
( m1_pythtrip(B)
=> ~ ( ~ v2_pythtrip(B)
& v3_pythtrip(B)
& r2_hidden(k2_nat_1(np__4,A),B) ) ) ) ) ).
fof(t15_pythtrip,axiom,
( ~ v2_pythtrip(k8_domain_1(k5_numbers,np__3,np__4,np__5))
& v3_pythtrip(k8_domain_1(k5_numbers,np__3,np__4,np__5))
& m1_pythtrip(k8_domain_1(k5_numbers,np__3,np__4,np__5)) ) ).
fof(dt_m1_pythtrip,axiom,
! [A] :
( m1_pythtrip(A)
=> m1_subset_1(A,k1_zfmisc_1(k5_numbers)) ) ).
fof(existence_m1_pythtrip,axiom,
? [A] : m1_pythtrip(A) ).
fof(t16_pythtrip,axiom,
~ v1_finset_1(a_0_0_pythtrip) ).
fof(fraenkel_a_0_0_pythtrip,axiom,
! [A] :
( r2_hidden(A,a_0_0_pythtrip)
<=> ? [B] :
( m1_pythtrip(B)
& A = B
& ~ v2_pythtrip(B)
& v3_pythtrip(B) ) ) ).
%------------------------------------------------------------------------------