SET007 Axioms: SET007+680.ax
%------------------------------------------------------------------------------
% File : SET007+680 : TPTP v9.0.0. Released v3.4.0.
% Domain : Set Theory
% Axioms : Dynkin's Lemma in Measure Theory
% Version : [Urb08] axioms.
% English :
% Refs : [Mat90] Matuszewski (1990), Formalized Mathematics
% : [Urb07] Urban (2007), MPTP 0.2: Design, Implementation, and In
% : [Urb08] Urban (2006), Email to G. Sutcliffe
% Source : [Urb08]
% Names : dynkin [Urb08]
% Status : Satisfiable
% Syntax : Number of formulae : 54 ( 5 unt; 0 def)
% Number of atoms : 302 ( 21 equ)
% Maximal formula atoms : 13 ( 5 avg)
% Number of connectives : 306 ( 58 ~; 0 |; 100 &)
% ( 10 <=>; 138 =>; 0 <=; 0 <~>)
% Maximal formula depth : 13 ( 8 avg)
% Maximal term depth : 6 ( 1 avg)
% Number of predicates : 20 ( 18 usr; 1 prp; 0-3 aty)
% Number of functors : 34 ( 34 usr; 5 con; 0-4 aty)
% Number of variables : 154 ( 152 !; 2 ?)
% SPC :
% Comments : The individual reference can be found in [Mat90] by looking for
% the name provided by [Urb08].
% : Translated by MPTP from the Mizar Mathematical Library 4.48.930.
% : These set theory axioms are used in encodings of problems in
% various domains, including ALG, CAT, GRP, LAT, SET, and TOP.
%------------------------------------------------------------------------------
fof(fc1_dynkin,axiom,
! [A] :
( m1_subset_1(A,k5_numbers)
=> v1_finset_1(k1_algseq_1(A)) ) ).
fof(fc2_dynkin,axiom,
! [A,B,C] :
( v1_relat_1(k1_dynkin(A,B,C))
& v1_funct_1(k1_dynkin(A,B,C)) ) ).
fof(cc1_dynkin,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ! [B] :
( m1_dynkin(B,A)
=> ~ v1_xboole_0(B) ) ) ).
fof(t1_dynkin,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ! [B] :
( ( v1_funct_1(B)
& v1_funct_2(B,k5_numbers,k1_zfmisc_1(A))
& m2_relset_1(B,k5_numbers,k1_zfmisc_1(A)) )
=> ! [C] :
( r2_hidden(C,k2_relat_1(B))
<=> ? [D] :
( m2_subset_1(D,k1_numbers,k5_numbers)
& k1_prob_1(A,B,D) = C ) ) ) ) ).
fof(t2_dynkin,axiom,
! [A] :
( m2_subset_1(A,k1_numbers,k5_numbers)
=> v1_finset_1(k2_algseq_1(A)) ) ).
fof(d1_dynkin,axiom,
! [A,B,C] : k1_dynkin(A,B,C) = k1_funct_4(k2_funcop_1(k5_numbers,C),k4_funct_4(np__0,np__1,A,B)) ).
fof(t3_dynkin,axiom,
$true ).
fof(t4_dynkin,axiom,
$true ).
fof(t5_dynkin,axiom,
! [A,B,C] :
( k1_funct_1(k1_dynkin(A,B,C),np__0) = A
& k1_funct_1(k1_dynkin(A,B,C),np__1) = B
& ! [D] :
( m2_subset_1(D,k1_numbers,k5_numbers)
=> ~ ( D != np__0
& D != np__1
& k1_funct_1(k1_dynkin(A,B,C),D) != C ) ) ) ).
fof(t6_dynkin,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ! [B] :
( m1_subset_1(B,k1_zfmisc_1(A))
=> ! [C] :
( m1_subset_1(C,k1_zfmisc_1(A))
=> k3_tarski(k2_relat_1(k1_dynkin(B,C,k1_xboole_0))) = k4_subset_1(A,B,C) ) ) ) ).
fof(d2_dynkin,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ! [B] :
( ( v1_funct_1(B)
& v1_funct_2(B,k5_numbers,k1_zfmisc_1(A))
& m2_relset_1(B,k5_numbers,k1_zfmisc_1(A)) )
=> ! [C] :
( m1_subset_1(C,k1_zfmisc_1(A))
=> ! [D] :
( ( v1_funct_1(D)
& v1_funct_2(D,k5_numbers,k1_zfmisc_1(A))
& m2_relset_1(D,k5_numbers,k1_zfmisc_1(A)) )
=> ( D = k4_dynkin(A,B,C)
<=> ! [E] :
( m2_subset_1(E,k1_numbers,k5_numbers)
=> k1_prob_1(A,D,E) = k5_subset_1(A,C,k1_prob_1(A,B,E)) ) ) ) ) ) ) ).
fof(d3_dynkin,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ! [B] :
( ( v1_funct_1(B)
& v1_funct_2(B,k5_numbers,k1_zfmisc_1(A))
& m2_relset_1(B,k5_numbers,k1_zfmisc_1(A)) )
=> ( v1_prob_2(B)
<=> ! [C] :
( m2_subset_1(C,k1_numbers,k5_numbers)
=> ! [D] :
( m2_subset_1(D,k1_numbers,k5_numbers)
=> ( ~ r1_xreal_0(D,C)
=> r1_xboole_0(k1_prob_1(A,B,C),k1_prob_1(A,B,D)) ) ) ) ) ) ) ).
fof(t7_dynkin,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ! [B] :
( r1_tarski(B,k1_setfam_1(A))
<=> ! [C] :
( m1_subset_1(C,A)
=> r1_tarski(B,C) ) ) ) ).
fof(d4_dynkin,axiom,
$true ).
fof(d5_dynkin,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ! [B] :
( ( v1_funct_1(B)
& v1_funct_2(B,k5_numbers,k1_zfmisc_1(A))
& m2_relset_1(B,k5_numbers,k1_zfmisc_1(A)) )
=> ! [C] :
( m2_subset_1(C,k1_numbers,k5_numbers)
=> k5_dynkin(A,B,C) = k4_xboole_0(k1_prob_1(A,B,C),k3_tarski(k2_relat_1(k7_relat_1(B,k2_algseq_1(C))))) ) ) ) ).
fof(d6_dynkin,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ! [B] :
( ( v1_funct_1(B)
& v1_funct_2(B,k5_numbers,k1_zfmisc_1(A))
& m2_relset_1(B,k5_numbers,k1_zfmisc_1(A)) )
=> ! [C] :
( ( v1_funct_1(C)
& v1_funct_2(C,k5_numbers,k1_zfmisc_1(A))
& m2_relset_1(C,k5_numbers,k1_zfmisc_1(A)) )
=> ( C = k6_dynkin(A,B)
<=> ! [D] :
( m2_subset_1(D,k1_numbers,k5_numbers)
=> k1_prob_1(A,C,D) = k5_dynkin(A,B,D) ) ) ) ) ) ).
fof(t8_dynkin,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ! [B] :
( ( v1_funct_1(B)
& v1_funct_2(B,k5_numbers,k1_zfmisc_1(A))
& m2_relset_1(B,k5_numbers,k1_zfmisc_1(A)) )
=> ! [C] :
( m2_subset_1(C,k1_numbers,k5_numbers)
=> k1_prob_1(A,k6_dynkin(A,B),C) = k4_xboole_0(k1_prob_1(A,B,C),k3_tarski(k2_relat_1(k7_relat_1(B,k2_algseq_1(C))))) ) ) ) ).
fof(t9_dynkin,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ! [B] :
( ( v1_funct_1(B)
& v1_funct_2(B,k5_numbers,k1_zfmisc_1(A))
& m2_relset_1(B,k5_numbers,k1_zfmisc_1(A)) )
=> v1_prob_2(k6_dynkin(A,B)) ) ) ).
fof(t10_dynkin,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ! [B] :
( ( v1_funct_1(B)
& v1_funct_2(B,k5_numbers,k1_zfmisc_1(A))
& m2_relset_1(B,k5_numbers,k1_zfmisc_1(A)) )
=> k3_tarski(k2_relat_1(k6_dynkin(A,B))) = k3_tarski(k2_relat_1(B)) ) ) ).
fof(t11_dynkin,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ! [B] :
( m1_subset_1(B,k1_zfmisc_1(A))
=> ! [C] :
( m1_subset_1(C,k1_zfmisc_1(A))
=> ( r1_xboole_0(B,C)
=> v1_prob_2(k3_dynkin(A,B,C,k1_subset_1(A))) ) ) ) ) ).
fof(t12_dynkin,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ! [B] :
( ( v1_funct_1(B)
& v1_funct_2(B,k5_numbers,k1_zfmisc_1(A))
& m2_relset_1(B,k5_numbers,k1_zfmisc_1(A)) )
=> ( v1_prob_2(B)
=> ! [C] :
( m1_subset_1(C,k1_zfmisc_1(A))
=> v1_prob_2(k4_dynkin(A,B,C)) ) ) ) ) ).
fof(t13_dynkin,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ! [B] :
( ( v1_funct_1(B)
& v1_funct_2(B,k5_numbers,k1_zfmisc_1(A))
& m2_relset_1(B,k5_numbers,k1_zfmisc_1(A)) )
=> ! [C] :
( m1_subset_1(C,k1_zfmisc_1(A))
=> k5_subset_1(A,C,k2_prob_1(A,B)) = k2_prob_1(A,k4_dynkin(A,B,C)) ) ) ) ).
fof(d7_dynkin,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ! [B] :
( m1_subset_1(B,k1_zfmisc_1(k1_zfmisc_1(A)))
=> ( m1_dynkin(B,A)
<=> ( ! [C] :
( ( v1_funct_1(C)
& v1_funct_2(C,k5_numbers,k1_zfmisc_1(A))
& m2_relset_1(C,k5_numbers,k1_zfmisc_1(A)) )
=> ( ( r1_tarski(k2_relat_1(C),B)
& v1_prob_2(C) )
=> r2_hidden(k2_prob_1(A,C),B) ) )
& ! [C] :
( m1_subset_1(C,k1_zfmisc_1(A))
=> ( r2_hidden(C,B)
=> r2_hidden(k3_subset_1(A,C),B) ) )
& r2_hidden(k1_xboole_0,B) ) ) ) ) ).
fof(t14_dynkin,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> m1_dynkin(k1_zfmisc_1(A),A) ) ).
fof(t15_dynkin,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ! [B] :
( ~ v1_xboole_0(B)
=> ( ! [C] :
( r2_hidden(C,A)
=> m1_dynkin(C,B) )
=> m1_dynkin(k1_setfam_1(A),B) ) ) ) ).
fof(t16_dynkin,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ! [B] :
( m1_subset_1(B,k1_zfmisc_1(A))
=> ! [C] :
( m1_subset_1(C,k1_zfmisc_1(A))
=> ! [D] :
( ( ~ v1_xboole_0(D)
& m1_subset_1(D,k1_zfmisc_1(k1_zfmisc_1(A))) )
=> ( ( m1_dynkin(D,A)
& v2_finsub_1(D)
& r2_hidden(B,D)
& r2_hidden(C,D) )
=> r2_hidden(k6_subset_1(A,B,C),D) ) ) ) ) ) ).
fof(t17_dynkin,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ! [B] :
( m1_subset_1(B,k1_zfmisc_1(A))
=> ! [C] :
( m1_subset_1(C,k1_zfmisc_1(A))
=> ! [D] :
( ( ~ v1_xboole_0(D)
& m1_subset_1(D,k1_zfmisc_1(k1_zfmisc_1(A))) )
=> ( ( m1_dynkin(D,A)
& v2_finsub_1(D)
& r2_hidden(B,D)
& r2_hidden(C,D) )
=> r2_hidden(k4_subset_1(A,B,C),D) ) ) ) ) ) ).
fof(t18_dynkin,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ! [B] :
( ( ~ v1_xboole_0(B)
& m1_subset_1(B,k1_zfmisc_1(k1_zfmisc_1(A))) )
=> ( ( m1_dynkin(B,A)
& v2_finsub_1(B) )
=> ! [C] :
( v1_finset_1(C)
=> ( r1_tarski(C,B)
=> r2_hidden(k3_tarski(C),B) ) ) ) ) ) ).
fof(t19_dynkin,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ! [B] :
( ( ~ v1_xboole_0(B)
& m1_subset_1(B,k1_zfmisc_1(k1_zfmisc_1(A))) )
=> ( ( m1_dynkin(B,A)
& v2_finsub_1(B) )
=> ! [C] :
( ( v1_funct_1(C)
& v1_funct_2(C,k5_numbers,k1_zfmisc_1(A))
& m2_relset_1(C,k5_numbers,k1_zfmisc_1(A)) )
=> ( r1_tarski(k2_relat_1(C),B)
=> r1_tarski(k2_relat_1(k6_dynkin(A,C)),B) ) ) ) ) ) ).
fof(t20_dynkin,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ! [B] :
( ( ~ v1_xboole_0(B)
& m1_subset_1(B,k1_zfmisc_1(k1_zfmisc_1(A))) )
=> ( ( m1_dynkin(B,A)
& v2_finsub_1(B) )
=> ! [C] :
( ( v1_funct_1(C)
& v1_funct_2(C,k5_numbers,k1_zfmisc_1(A))
& m2_relset_1(C,k5_numbers,k1_zfmisc_1(A)) )
=> ( r1_tarski(k2_relat_1(C),B)
=> r2_hidden(k3_tarski(k2_relat_1(C)),B) ) ) ) ) ) ).
fof(t21_dynkin,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ! [B] :
( m1_dynkin(B,A)
=> ! [C] :
( m2_subset_1(C,k1_zfmisc_1(A),B)
=> ! [D] :
( m2_subset_1(D,k1_zfmisc_1(A),B)
=> ( r1_xboole_0(C,D)
=> r2_hidden(k4_subset_1(A,C,D),B) ) ) ) ) ) ).
fof(t22_dynkin,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ! [B] :
( m1_dynkin(B,A)
=> ! [C] :
( m2_subset_1(C,k1_zfmisc_1(A),B)
=> ! [D] :
( m2_subset_1(D,k1_zfmisc_1(A),B)
=> ( r1_tarski(C,D)
=> r2_hidden(k6_subset_1(A,D,C),B) ) ) ) ) ) ).
fof(t23_dynkin,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ! [B] :
( ( ~ v1_xboole_0(B)
& m1_subset_1(B,k1_zfmisc_1(k1_zfmisc_1(A))) )
=> ( ( m1_dynkin(B,A)
& v2_finsub_1(B) )
=> m1_prob_1(B,A) ) ) ) ).
fof(d8_dynkin,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ! [B] :
( m1_subset_1(B,k1_zfmisc_1(k1_zfmisc_1(A)))
=> ! [C] :
( m1_dynkin(C,A)
=> ( C = k7_dynkin(A,B)
<=> ( r1_tarski(B,C)
& ! [D] :
( m1_dynkin(D,A)
=> ( r1_tarski(B,D)
=> r1_tarski(C,D) ) ) ) ) ) ) ) ).
fof(d9_dynkin,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ! [B,C] :
( m1_subset_1(C,k1_zfmisc_1(A))
=> ! [D] :
( m1_subset_1(D,k1_zfmisc_1(k1_zfmisc_1(A)))
=> ( D = k8_dynkin(A,B,C)
<=> ! [E] :
( m1_subset_1(E,k1_zfmisc_1(A))
=> ( r2_hidden(E,D)
<=> r2_hidden(k5_subset_1(A,E,C),B) ) ) ) ) ) ) ).
fof(t24_dynkin,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ! [B] :
( m1_subset_1(B,k1_zfmisc_1(k1_zfmisc_1(A)))
=> ! [C] :
( m1_subset_1(C,k1_zfmisc_1(A))
=> ! [D] :
( m1_subset_1(D,k1_zfmisc_1(A))
=> ( ( r2_hidden(C,B)
& r2_hidden(D,k7_dynkin(A,B))
& v2_finsub_1(B) )
=> r2_hidden(k5_subset_1(A,C,D),k7_dynkin(A,B)) ) ) ) ) ) ).
fof(t25_dynkin,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ! [B] :
( m1_subset_1(B,k1_zfmisc_1(k1_zfmisc_1(A)))
=> ! [C] :
( m1_subset_1(C,k1_zfmisc_1(A))
=> ! [D] :
( m1_subset_1(D,k1_zfmisc_1(A))
=> ( ( r2_hidden(C,k7_dynkin(A,B))
& r2_hidden(D,k7_dynkin(A,B))
& v2_finsub_1(B) )
=> r2_hidden(k5_subset_1(A,C,D),k7_dynkin(A,B)) ) ) ) ) ) ).
fof(t26_dynkin,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ! [B] :
( m1_subset_1(B,k1_zfmisc_1(k1_zfmisc_1(A)))
=> ( v2_finsub_1(B)
=> v2_finsub_1(k7_dynkin(A,B)) ) ) ) ).
fof(t27_dynkin,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ! [B] :
( m1_subset_1(B,k1_zfmisc_1(k1_zfmisc_1(A)))
=> ( v2_finsub_1(B)
=> ! [C] :
( m1_dynkin(C,A)
=> ( r1_tarski(B,C)
=> r1_tarski(k11_prob_1(A,B),C) ) ) ) ) ) ).
fof(dt_m1_dynkin,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ! [B] :
( m1_dynkin(B,A)
=> m1_subset_1(B,k1_zfmisc_1(k1_zfmisc_1(A))) ) ) ).
fof(existence_m1_dynkin,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ? [B] : m1_dynkin(B,A) ) ).
fof(redefinition_v1_dynkin,axiom,
! [A,B] :
( ( ~ v1_xboole_0(A)
& v1_funct_1(B)
& v1_funct_2(B,k5_numbers,k1_zfmisc_1(A))
& m1_relset_1(B,k5_numbers,k1_zfmisc_1(A)) )
=> ( v1_dynkin(B,A)
<=> v1_prob_2(B) ) ) ).
fof(dt_k1_dynkin,axiom,
$true ).
fof(dt_k2_dynkin,axiom,
! [A,B,C,D] :
( ( ~ v1_xboole_0(A)
& m1_subset_1(B,A)
& m1_subset_1(C,A)
& m1_subset_1(D,A) )
=> ( v1_funct_1(k2_dynkin(A,B,C,D))
& v1_funct_2(k2_dynkin(A,B,C,D),k5_numbers,A)
& m2_relset_1(k2_dynkin(A,B,C,D),k5_numbers,A) ) ) ).
fof(redefinition_k2_dynkin,axiom,
! [A,B,C,D] :
( ( ~ v1_xboole_0(A)
& m1_subset_1(B,A)
& m1_subset_1(C,A)
& m1_subset_1(D,A) )
=> k2_dynkin(A,B,C,D) = k1_dynkin(B,C,D) ) ).
fof(dt_k3_dynkin,axiom,
! [A,B,C,D] :
( ( ~ v1_xboole_0(A)
& m1_subset_1(B,k1_zfmisc_1(A))
& m1_subset_1(C,k1_zfmisc_1(A))
& m1_subset_1(D,k1_zfmisc_1(A)) )
=> ( v1_funct_1(k3_dynkin(A,B,C,D))
& v1_funct_2(k3_dynkin(A,B,C,D),k5_numbers,k1_zfmisc_1(A))
& m2_relset_1(k3_dynkin(A,B,C,D),k5_numbers,k1_zfmisc_1(A)) ) ) ).
fof(redefinition_k3_dynkin,axiom,
! [A,B,C,D] :
( ( ~ v1_xboole_0(A)
& m1_subset_1(B,k1_zfmisc_1(A))
& m1_subset_1(C,k1_zfmisc_1(A))
& m1_subset_1(D,k1_zfmisc_1(A)) )
=> k3_dynkin(A,B,C,D) = k1_dynkin(B,C,D) ) ).
fof(dt_k4_dynkin,axiom,
! [A,B,C] :
( ( ~ v1_xboole_0(A)
& v1_funct_1(B)
& v1_funct_2(B,k5_numbers,k1_zfmisc_1(A))
& m1_relset_1(B,k5_numbers,k1_zfmisc_1(A))
& m1_subset_1(C,k1_zfmisc_1(A)) )
=> ( v1_funct_1(k4_dynkin(A,B,C))
& v1_funct_2(k4_dynkin(A,B,C),k5_numbers,k1_zfmisc_1(A))
& m2_relset_1(k4_dynkin(A,B,C),k5_numbers,k1_zfmisc_1(A)) ) ) ).
fof(dt_k5_dynkin,axiom,
! [A,B,C] :
( ( ~ v1_xboole_0(A)
& v1_funct_1(B)
& v1_funct_2(B,k5_numbers,k1_zfmisc_1(A))
& m1_relset_1(B,k5_numbers,k1_zfmisc_1(A))
& m1_subset_1(C,k5_numbers) )
=> m1_subset_1(k5_dynkin(A,B,C),k1_zfmisc_1(A)) ) ).
fof(dt_k6_dynkin,axiom,
! [A,B] :
( ( ~ v1_xboole_0(A)
& v1_funct_1(B)
& v1_funct_2(B,k5_numbers,k1_zfmisc_1(A))
& m1_relset_1(B,k5_numbers,k1_zfmisc_1(A)) )
=> ( v1_funct_1(k6_dynkin(A,B))
& v1_funct_2(k6_dynkin(A,B),k5_numbers,k1_zfmisc_1(A))
& m2_relset_1(k6_dynkin(A,B),k5_numbers,k1_zfmisc_1(A)) ) ) ).
fof(dt_k7_dynkin,axiom,
! [A,B] :
( ( ~ v1_xboole_0(A)
& m1_subset_1(B,k1_zfmisc_1(k1_zfmisc_1(A))) )
=> m1_dynkin(k7_dynkin(A,B),A) ) ).
fof(dt_k8_dynkin,axiom,
! [A,B,C] :
( ( ~ v1_xboole_0(A)
& m1_subset_1(C,k1_zfmisc_1(A)) )
=> m1_subset_1(k8_dynkin(A,B,C),k1_zfmisc_1(k1_zfmisc_1(A))) ) ).
fof(dt_k9_dynkin,axiom,
! [A,B,C] :
( ( ~ v1_xboole_0(A)
& m1_dynkin(B,A)
& m1_subset_1(C,B) )
=> m1_dynkin(k9_dynkin(A,B,C),A) ) ).
fof(redefinition_k9_dynkin,axiom,
! [A,B,C] :
( ( ~ v1_xboole_0(A)
& m1_dynkin(B,A)
& m1_subset_1(C,B) )
=> k9_dynkin(A,B,C) = k8_dynkin(A,B,C) ) ).
%------------------------------------------------------------------------------