SET007 Axioms: SET007+671.ax


%------------------------------------------------------------------------------
% File     : SET007+671 : TPTP v9.0.0. Released v3.4.0.
% Domain   : Set Theory
% Axioms   : The Concept of Fuzzy Relation and Basic Properties of its Operation
% Version  : [Urb08] axioms.
% English  :

% Refs     : [Mat90] Matuszewski (1990), Formalized Mathematics
%          : [Urb07] Urban (2007), MPTP 0.2: Design, Implementation, and In
%          : [Urb08] Urban (2006), Email to G. Sutcliffe
% Source   : [Urb08]
% Names    : fuzzy_3 [Urb08]

% Status   : Satisfiable
% Syntax   : Number of formulae    :   12 (   0 unt;   0 def)
%            Number of atoms       :   50 (  13 equ)
%            Maximal formula atoms :    7 (   4 avg)
%            Number of connectives :   61 (  23   ~;   0   |;   7   &)
%                                         (   0 <=>;  31  =>;   0  <=;   0 <~>)
%            Maximal formula depth :   10 (   7 avg)
%            Maximal term depth    :    3 (   1 avg)
%            Number of predicates  :    7 (   6 usr;   0 prp; 1-3 aty)
%            Number of functors    :   13 (  13 usr;   2 con; 0-4 aty)
%            Number of variables   :   31 (  31   !;   0   ?)
% SPC      : 

% Comments : The individual reference can be found in [Mat90] by looking for
%            the name provided by [Urb08].
%          : Translated by MPTP from the Mizar Mathematical Library 4.48.930.
%          : These set theory axioms are used in encodings of problems in
%            various domains, including ALG, CAT, GRP, LAT, SET, and TOP.
%------------------------------------------------------------------------------
fof(cc1_fuzzy_3,axiom,
    ! [A] :
      ( ~ v1_xboole_0(A)
     => ! [B] :
          ( m1_fuzzy_1(B,A)
         => v1_funct_2(B,A,k1_numbers) ) ) ).

fof(d1_fuzzy_3,axiom,
    ! [A] :
      ( ~ v1_xboole_0(A)
     => ! [B] :
          ( ~ v1_xboole_0(B)
         => k1_fuzzy_3(A,B) = k5_rfunct_1(k1_xboole_0,k2_zfmisc_1(A,B)) ) ) ).

fof(d2_fuzzy_3,axiom,
    ! [A] :
      ( ~ v1_xboole_0(A)
     => ! [B] :
          ( ~ v1_xboole_0(B)
         => k2_fuzzy_3(A,B) = k5_rfunct_1(k2_zfmisc_1(A,B),k2_zfmisc_1(A,B)) ) ) ).

fof(t1_fuzzy_3,axiom,
    ! [A] :
      ( ~ v1_xboole_0(A)
     => ! [B] :
          ( ~ v1_xboole_0(B)
         => k1_fuzzy_3(A,B) = k4_fuzzy_1(k2_zfmisc_1(A,B)) ) ) ).

fof(t2_fuzzy_3,axiom,
    ! [A] :
      ( ~ v1_xboole_0(A)
     => ! [B] :
          ( ~ v1_xboole_0(B)
         => k2_fuzzy_3(A,B) = k5_fuzzy_1(k2_zfmisc_1(A,B)) ) ) ).

fof(t3_fuzzy_3,axiom,
    ! [A] :
      ( ~ v1_xboole_0(A)
     => ! [B] :
          ( ~ v1_xboole_0(B)
         => ! [C] :
              ( m1_subset_1(C,k2_zfmisc_1(A,B))
             => ! [D] :
                  ( m1_fuzzy_1(D,k2_zfmisc_1(A,B))
                 => ( r1_xreal_0(k8_funct_2(k2_zfmisc_1(A,B),k1_numbers,k1_fuzzy_3(A,B),C),k8_funct_2(k2_zfmisc_1(A,B),k1_numbers,D,C))
                    & r1_xreal_0(k8_funct_2(k2_zfmisc_1(A,B),k1_numbers,D,C),k8_funct_2(k2_zfmisc_1(A,B),k1_numbers,k2_fuzzy_3(A,B),C)) ) ) ) ) ) ).

fof(t4_fuzzy_3,axiom,
    ! [A] :
      ( ~ v1_xboole_0(A)
     => ! [B] :
          ( ~ v1_xboole_0(B)
         => ! [C] :
              ( m1_fuzzy_1(C,k2_zfmisc_1(A,B))
             => ( k2_fuzzy_1(k2_zfmisc_1(A,B),C,k2_fuzzy_3(A,B)) = k2_fuzzy_3(A,B)
                & k1_fuzzy_1(k2_zfmisc_1(A,B),C,k2_fuzzy_3(A,B)) = C
                & k2_fuzzy_1(k2_zfmisc_1(A,B),C,k1_fuzzy_3(A,B)) = C
                & k1_fuzzy_1(k2_zfmisc_1(A,B),C,k1_fuzzy_3(A,B)) = k1_fuzzy_3(A,B) ) ) ) ) ).

fof(t5_fuzzy_3,axiom,
    ! [A] :
      ( ~ v1_xboole_0(A)
     => ! [B] :
          ( ~ v1_xboole_0(B)
         => ( k3_fuzzy_1(k2_zfmisc_1(A,B),k1_fuzzy_3(A,B)) = k2_fuzzy_3(A,B)
            & k3_fuzzy_1(k2_zfmisc_1(A,B),k2_fuzzy_3(A,B)) = k1_fuzzy_3(A,B) ) ) ) ).

fof(t6_fuzzy_3,axiom,
    ! [A] :
      ( ~ v1_xboole_0(A)
     => ! [B] :
          ( ~ v1_xboole_0(B)
         => ! [C] :
              ( m1_fuzzy_1(C,k2_zfmisc_1(A,B))
             => ! [D] :
                  ( m1_fuzzy_1(D,k2_zfmisc_1(A,B))
                 => ( k1_fuzzy_2(k2_zfmisc_1(A,B),C,D) = k1_fuzzy_3(A,B)
                   => r1_fuzzy_1(C,D) ) ) ) ) ) ).

fof(t7_fuzzy_3,axiom,
    ! [A] :
      ( ~ v1_xboole_0(A)
     => ! [B] :
          ( ~ v1_xboole_0(B)
         => ! [C] :
              ( m1_fuzzy_1(C,k2_zfmisc_1(A,B))
             => ! [D] :
                  ( m1_fuzzy_1(D,k2_zfmisc_1(A,B))
                 => ( k1_fuzzy_1(k2_zfmisc_1(A,B),C,D) = k1_fuzzy_3(A,B)
                   => k1_fuzzy_2(k2_zfmisc_1(A,B),C,D) = C ) ) ) ) ) ).

fof(dt_k1_fuzzy_3,axiom,
    ! [A,B] :
      ( ( ~ v1_xboole_0(A)
        & ~ v1_xboole_0(B) )
     => m1_fuzzy_1(k1_fuzzy_3(A,B),k2_zfmisc_1(A,B)) ) ).

fof(dt_k2_fuzzy_3,axiom,
    ! [A,B] :
      ( ( ~ v1_xboole_0(A)
        & ~ v1_xboole_0(B) )
     => m1_fuzzy_1(k2_fuzzy_3(A,B),k2_zfmisc_1(A,B)) ) ).

%------------------------------------------------------------------------------