SET007 Axioms: SET007+671.ax
%------------------------------------------------------------------------------
% File : SET007+671 : TPTP v9.0.0. Released v3.4.0.
% Domain : Set Theory
% Axioms : The Concept of Fuzzy Relation and Basic Properties of its Operation
% Version : [Urb08] axioms.
% English :
% Refs : [Mat90] Matuszewski (1990), Formalized Mathematics
% : [Urb07] Urban (2007), MPTP 0.2: Design, Implementation, and In
% : [Urb08] Urban (2006), Email to G. Sutcliffe
% Source : [Urb08]
% Names : fuzzy_3 [Urb08]
% Status : Satisfiable
% Syntax : Number of formulae : 12 ( 0 unt; 0 def)
% Number of atoms : 50 ( 13 equ)
% Maximal formula atoms : 7 ( 4 avg)
% Number of connectives : 61 ( 23 ~; 0 |; 7 &)
% ( 0 <=>; 31 =>; 0 <=; 0 <~>)
% Maximal formula depth : 10 ( 7 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 7 ( 6 usr; 0 prp; 1-3 aty)
% Number of functors : 13 ( 13 usr; 2 con; 0-4 aty)
% Number of variables : 31 ( 31 !; 0 ?)
% SPC :
% Comments : The individual reference can be found in [Mat90] by looking for
% the name provided by [Urb08].
% : Translated by MPTP from the Mizar Mathematical Library 4.48.930.
% : These set theory axioms are used in encodings of problems in
% various domains, including ALG, CAT, GRP, LAT, SET, and TOP.
%------------------------------------------------------------------------------
fof(cc1_fuzzy_3,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ! [B] :
( m1_fuzzy_1(B,A)
=> v1_funct_2(B,A,k1_numbers) ) ) ).
fof(d1_fuzzy_3,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ! [B] :
( ~ v1_xboole_0(B)
=> k1_fuzzy_3(A,B) = k5_rfunct_1(k1_xboole_0,k2_zfmisc_1(A,B)) ) ) ).
fof(d2_fuzzy_3,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ! [B] :
( ~ v1_xboole_0(B)
=> k2_fuzzy_3(A,B) = k5_rfunct_1(k2_zfmisc_1(A,B),k2_zfmisc_1(A,B)) ) ) ).
fof(t1_fuzzy_3,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ! [B] :
( ~ v1_xboole_0(B)
=> k1_fuzzy_3(A,B) = k4_fuzzy_1(k2_zfmisc_1(A,B)) ) ) ).
fof(t2_fuzzy_3,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ! [B] :
( ~ v1_xboole_0(B)
=> k2_fuzzy_3(A,B) = k5_fuzzy_1(k2_zfmisc_1(A,B)) ) ) ).
fof(t3_fuzzy_3,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ! [B] :
( ~ v1_xboole_0(B)
=> ! [C] :
( m1_subset_1(C,k2_zfmisc_1(A,B))
=> ! [D] :
( m1_fuzzy_1(D,k2_zfmisc_1(A,B))
=> ( r1_xreal_0(k8_funct_2(k2_zfmisc_1(A,B),k1_numbers,k1_fuzzy_3(A,B),C),k8_funct_2(k2_zfmisc_1(A,B),k1_numbers,D,C))
& r1_xreal_0(k8_funct_2(k2_zfmisc_1(A,B),k1_numbers,D,C),k8_funct_2(k2_zfmisc_1(A,B),k1_numbers,k2_fuzzy_3(A,B),C)) ) ) ) ) ) ).
fof(t4_fuzzy_3,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ! [B] :
( ~ v1_xboole_0(B)
=> ! [C] :
( m1_fuzzy_1(C,k2_zfmisc_1(A,B))
=> ( k2_fuzzy_1(k2_zfmisc_1(A,B),C,k2_fuzzy_3(A,B)) = k2_fuzzy_3(A,B)
& k1_fuzzy_1(k2_zfmisc_1(A,B),C,k2_fuzzy_3(A,B)) = C
& k2_fuzzy_1(k2_zfmisc_1(A,B),C,k1_fuzzy_3(A,B)) = C
& k1_fuzzy_1(k2_zfmisc_1(A,B),C,k1_fuzzy_3(A,B)) = k1_fuzzy_3(A,B) ) ) ) ) ).
fof(t5_fuzzy_3,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ! [B] :
( ~ v1_xboole_0(B)
=> ( k3_fuzzy_1(k2_zfmisc_1(A,B),k1_fuzzy_3(A,B)) = k2_fuzzy_3(A,B)
& k3_fuzzy_1(k2_zfmisc_1(A,B),k2_fuzzy_3(A,B)) = k1_fuzzy_3(A,B) ) ) ) ).
fof(t6_fuzzy_3,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ! [B] :
( ~ v1_xboole_0(B)
=> ! [C] :
( m1_fuzzy_1(C,k2_zfmisc_1(A,B))
=> ! [D] :
( m1_fuzzy_1(D,k2_zfmisc_1(A,B))
=> ( k1_fuzzy_2(k2_zfmisc_1(A,B),C,D) = k1_fuzzy_3(A,B)
=> r1_fuzzy_1(C,D) ) ) ) ) ) ).
fof(t7_fuzzy_3,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ! [B] :
( ~ v1_xboole_0(B)
=> ! [C] :
( m1_fuzzy_1(C,k2_zfmisc_1(A,B))
=> ! [D] :
( m1_fuzzy_1(D,k2_zfmisc_1(A,B))
=> ( k1_fuzzy_1(k2_zfmisc_1(A,B),C,D) = k1_fuzzy_3(A,B)
=> k1_fuzzy_2(k2_zfmisc_1(A,B),C,D) = C ) ) ) ) ) ).
fof(dt_k1_fuzzy_3,axiom,
! [A,B] :
( ( ~ v1_xboole_0(A)
& ~ v1_xboole_0(B) )
=> m1_fuzzy_1(k1_fuzzy_3(A,B),k2_zfmisc_1(A,B)) ) ).
fof(dt_k2_fuzzy_3,axiom,
! [A,B] :
( ( ~ v1_xboole_0(A)
& ~ v1_xboole_0(B) )
=> m1_fuzzy_1(k2_fuzzy_3(A,B),k2_zfmisc_1(A,B)) ) ).
%------------------------------------------------------------------------------