SET007 Axioms: SET007+66.ax
%------------------------------------------------------------------------------
% File : SET007+66 : TPTP v9.0.0. Released v3.4.0.
% Domain : Set Theory
% Axioms : Tarski's Classes and Ranks
% Version : [Urb08] axioms.
% English :
% Refs : [Mat90] Matuszewski (1990), Formalized Mathematics
% : [Urb07] Urban (2007), MPTP 0.2: Design, Implementation, and In
% : [Urb08] Urban (2006), Email to G. Sutcliffe
% Source : [Urb08]
% Names : classes1 [Urb08]
% Status : Satisfiable
% Syntax : Number of formulae : 103 ( 21 unt; 0 def)
% Number of atoms : 348 ( 61 equ)
% Maximal formula atoms : 16 ( 3 avg)
% Number of connectives : 273 ( 28 ~; 8 |; 101 &)
% ( 31 <=>; 105 =>; 0 <=; 0 <~>)
% Maximal formula depth : 18 ( 6 avg)
% Maximal term depth : 5 ( 1 avg)
% Number of predicates : 18 ( 16 usr; 1 prp; 0-3 aty)
% Number of functors : 33 ( 33 usr; 6 con; 0-3 aty)
% Number of variables : 218 ( 200 !; 18 ?)
% SPC :
% Comments : The individual reference can be found in [Mat90] by looking for
% the name provided by [Urb08].
% : Translated by MPTP from the Mizar Mathematical Library 4.48.930.
% : These set theory axioms are used in encodings of problems in
% various domains, including ALG, CAT, GRP, LAT, SET, and TOP.
%------------------------------------------------------------------------------
fof(fc1_classes1,axiom,
! [A] : ~ v1_xboole_0(k1_classes1(A)) ).
fof(d1_classes1,axiom,
! [A] :
( v1_classes1(A)
<=> ! [B,C] :
( ( r2_hidden(B,A)
& r1_tarski(C,B) )
=> r2_hidden(C,A) ) ) ).
fof(d2_classes1,axiom,
! [A] :
( v2_classes1(A)
<=> ( v1_classes1(A)
& ! [B] :
( r2_hidden(B,A)
=> r2_hidden(k1_zfmisc_1(B),A) )
& ! [B] :
~ ( r1_tarski(B,A)
& ~ r2_tarski(B,A)
& ~ r2_hidden(B,A) ) ) ) ).
fof(d3_classes1,axiom,
! [A,B] :
( r1_classes1(A,B)
<=> ( r2_hidden(A,B)
& v2_classes1(B) ) ) ).
fof(d4_classes1,axiom,
! [A,B] :
( B = k1_classes1(A)
<=> ( r1_classes1(A,B)
& ! [C] :
( r1_classes1(A,C)
=> r1_tarski(B,C) ) ) ) ).
fof(t1_classes1,axiom,
$true ).
fof(t2_classes1,axiom,
! [A] :
( v2_classes1(A)
<=> ( v1_classes1(A)
& ! [B] :
( r2_hidden(B,A)
=> r2_hidden(k1_zfmisc_1(B),A) )
& ! [B] :
( ( r1_tarski(B,A)
& r2_hidden(k1_card_1(B),k1_card_1(A)) )
=> r2_hidden(B,A) ) ) ) ).
fof(t3_classes1,axiom,
$true ).
fof(t4_classes1,axiom,
$true ).
fof(t5_classes1,axiom,
! [A] : r2_hidden(A,k1_classes1(A)) ).
fof(t6_classes1,axiom,
! [A,B,C] :
( ( r2_hidden(A,k1_classes1(B))
& r1_tarski(C,A) )
=> r2_hidden(C,k1_classes1(B)) ) ).
fof(t7_classes1,axiom,
! [A,B] :
( r2_hidden(A,k1_classes1(B))
=> r2_hidden(k1_zfmisc_1(A),k1_classes1(B)) ) ).
fof(t8_classes1,axiom,
! [A,B] :
~ ( r1_tarski(A,k1_classes1(B))
& ~ r2_tarski(A,k1_classes1(B))
& ~ r2_hidden(A,k1_classes1(B)) ) ).
fof(t9_classes1,axiom,
! [A,B] :
( ( r1_tarski(A,k1_classes1(B))
& r2_hidden(k1_card_1(A),k1_card_1(k1_classes1(B))) )
=> r2_hidden(A,k1_classes1(B)) ) ).
fof(t10_classes1,axiom,
! [A] : k3_classes1(A,k1_xboole_0) = k1_tarski(A) ).
fof(t13_classes1,axiom,
! [A,B,C] :
( v3_ordinal1(C)
=> ( r2_hidden(A,k3_classes1(B,k1_ordinal1(C)))
<=> ~ ( ~ ( r1_tarski(A,k3_classes1(B,C))
& r2_hidden(A,k1_classes1(B)) )
& ! [D] :
~ ( r2_hidden(D,k3_classes1(B,C))
& ( r1_tarski(A,D)
| A = k1_zfmisc_1(D) ) ) ) ) ) ).
fof(t14_classes1,axiom,
! [A,B,C,D] :
( v3_ordinal1(D)
=> ( ( r1_tarski(A,B)
& r2_hidden(B,k3_classes1(C,D)) )
=> r2_hidden(A,k3_classes1(C,k1_ordinal1(D))) ) ) ).
fof(t15_classes1,axiom,
! [A,B,C] :
( v3_ordinal1(C)
=> ( r2_hidden(A,k3_classes1(B,C))
=> r2_hidden(k1_zfmisc_1(A),k3_classes1(B,k1_ordinal1(C))) ) ) ).
fof(t16_classes1,axiom,
! [A,B,C] :
( v3_ordinal1(C)
=> ( v4_ordinal1(C)
=> ( C = k1_xboole_0
| ( r2_hidden(B,k3_classes1(A,C))
<=> ? [D] :
( v3_ordinal1(D)
& r2_hidden(D,C)
& r2_hidden(B,k3_classes1(A,D)) ) ) ) ) ) ).
fof(t17_classes1,axiom,
! [A,B,C,D] :
( v3_ordinal1(D)
=> ( ( v4_ordinal1(D)
& r2_hidden(A,k3_classes1(B,D)) )
=> ( D = k1_xboole_0
| ( ~ r1_tarski(C,A)
& C != k1_zfmisc_1(A) )
| r2_hidden(C,k3_classes1(B,D)) ) ) ) ).
fof(t18_classes1,axiom,
! [A,B] :
( v3_ordinal1(B)
=> r1_tarski(k3_classes1(A,B),k3_classes1(A,k1_ordinal1(B))) ) ).
fof(t19_classes1,axiom,
! [A,B] :
( v3_ordinal1(B)
=> ! [C] :
( v3_ordinal1(C)
=> ( r1_ordinal1(B,C)
=> r1_tarski(k3_classes1(A,B),k3_classes1(A,C)) ) ) ) ).
fof(t20_classes1,axiom,
! [A] :
? [B] :
( v3_ordinal1(B)
& k3_classes1(A,B) = k3_classes1(A,k1_ordinal1(B)) ) ).
fof(t21_classes1,axiom,
! [A,B] :
( v3_ordinal1(B)
=> ( k3_classes1(A,B) = k3_classes1(A,k1_ordinal1(B))
=> k3_classes1(A,B) = k1_classes1(A) ) ) ).
fof(t22_classes1,axiom,
! [A] :
? [B] :
( v3_ordinal1(B)
& k3_classes1(A,B) = k1_classes1(A) ) ).
fof(t23_classes1,axiom,
! [A] :
? [B] :
( v3_ordinal1(B)
& k3_classes1(A,B) = k1_classes1(A)
& ! [C] :
( v3_ordinal1(C)
=> ~ ( r2_hidden(C,B)
& k3_classes1(A,C) = k1_classes1(A) ) ) ) ).
fof(t24_classes1,axiom,
! [A,B] :
~ ( A != B
& r2_hidden(A,k1_classes1(B))
& ! [C] :
( v3_ordinal1(C)
=> ~ ( ~ r2_hidden(A,k3_classes1(B,C))
& r2_hidden(A,k3_classes1(B,k1_ordinal1(C))) ) ) ) ).
fof(t25_classes1,axiom,
! [A] :
( v1_ordinal1(A)
=> ! [B] :
( v3_ordinal1(B)
=> ( B != k1_xboole_0
=> v1_ordinal1(k3_classes1(A,B)) ) ) ) ).
fof(t26_classes1,axiom,
! [A] :
( r2_hidden(k3_classes1(A,k1_xboole_0),k3_classes1(A,k4_ordinal2))
& k3_classes1(A,k1_xboole_0) != k3_classes1(A,k4_ordinal2) ) ).
fof(t27_classes1,axiom,
! [A] :
( v1_ordinal1(A)
=> v1_ordinal1(k1_classes1(A)) ) ).
fof(t28_classes1,axiom,
! [A,B] :
( r2_hidden(A,k1_classes1(B))
=> r2_hidden(k1_card_1(A),k1_card_1(k1_classes1(B))) ) ).
fof(t29_classes1,axiom,
! [A,B] :
~ ( r2_hidden(A,k1_classes1(B))
& r2_tarski(A,k1_classes1(B)) ) ).
fof(t30_classes1,axiom,
! [A,B,C] :
( ( r2_hidden(B,k1_classes1(A))
& r2_hidden(C,k1_classes1(A)) )
=> ( r2_hidden(k1_tarski(B),k1_classes1(A))
& r2_hidden(k2_tarski(B,C),k1_classes1(A)) ) ) ).
fof(t31_classes1,axiom,
! [A,B,C] :
( ( r2_hidden(B,k1_classes1(A))
& r2_hidden(C,k1_classes1(A)) )
=> r2_hidden(k4_tarski(B,C),k1_classes1(A)) ) ).
fof(t32_classes1,axiom,
! [A,B,C] :
( ( r1_tarski(A,k1_classes1(B))
& r1_tarski(C,k1_classes1(B)) )
=> r1_tarski(k2_zfmisc_1(A,C),k1_classes1(B)) ) ).
fof(d6_classes1,axiom,
! [A] :
( v3_ordinal1(A)
=> ! [B] :
( B = k4_classes1(A)
<=> ? [C] :
( v1_relat_1(C)
& v1_funct_1(C)
& v5_ordinal1(C)
& B = k1_ordinal2(C)
& k1_relat_1(C) = k1_ordinal1(A)
& k1_funct_1(C,k1_xboole_0) = k1_xboole_0
& ! [D] :
( v3_ordinal1(D)
=> ( r2_hidden(k1_ordinal1(D),k1_ordinal1(A))
=> k1_funct_1(C,k1_ordinal1(D)) = k1_zfmisc_1(k1_funct_1(C,D)) ) )
& ! [D] :
( v3_ordinal1(D)
=> ( ( r2_hidden(D,k1_ordinal1(A))
& v4_ordinal1(D) )
=> ( D = k1_xboole_0
| k1_funct_1(C,D) = k3_tarski(k2_relat_1(k2_ordinal1(C,D))) ) ) ) ) ) ) ).
fof(t33_classes1,axiom,
k4_classes1(k1_xboole_0) = k1_xboole_0 ).
fof(t34_classes1,axiom,
! [A] :
( v3_ordinal1(A)
=> k4_classes1(k1_ordinal1(A)) = k1_zfmisc_1(k4_classes1(A)) ) ).
fof(t35_classes1,axiom,
! [A] :
( v3_ordinal1(A)
=> ( v4_ordinal1(A)
=> ( A = k1_xboole_0
| ! [B] :
( r2_hidden(B,k4_classes1(A))
<=> ? [C] :
( v3_ordinal1(C)
& r2_hidden(C,A)
& r2_hidden(B,k4_classes1(C)) ) ) ) ) ) ).
fof(t36_classes1,axiom,
! [A,B] :
( v3_ordinal1(B)
=> ( r1_tarski(A,k4_classes1(B))
<=> r2_hidden(A,k4_classes1(k1_ordinal1(B))) ) ) ).
fof(t37_classes1,axiom,
! [A] :
( v3_ordinal1(A)
=> v1_ordinal1(k4_classes1(A)) ) ).
fof(t38_classes1,axiom,
! [A,B] :
( v3_ordinal1(B)
=> ( r2_hidden(A,k4_classes1(B))
=> r1_tarski(A,k4_classes1(B)) ) ) ).
fof(t39_classes1,axiom,
! [A] :
( v3_ordinal1(A)
=> r1_tarski(k4_classes1(A),k4_classes1(k1_ordinal1(A))) ) ).
fof(t40_classes1,axiom,
! [A] :
( v3_ordinal1(A)
=> r1_tarski(k3_tarski(k4_classes1(A)),k4_classes1(A)) ) ).
fof(t41_classes1,axiom,
! [A,B] :
( v3_ordinal1(B)
=> ( r2_hidden(A,k4_classes1(B))
=> r2_hidden(k3_tarski(A),k4_classes1(B)) ) ) ).
fof(t42_classes1,axiom,
! [A] :
( v3_ordinal1(A)
=> ! [B] :
( v3_ordinal1(B)
=> ( r2_hidden(A,B)
<=> r2_hidden(k4_classes1(A),k4_classes1(B)) ) ) ) ).
fof(t43_classes1,axiom,
! [A] :
( v3_ordinal1(A)
=> ! [B] :
( v3_ordinal1(B)
=> ( r1_ordinal1(A,B)
<=> r1_tarski(k4_classes1(A),k4_classes1(B)) ) ) ) ).
fof(t44_classes1,axiom,
! [A] :
( v3_ordinal1(A)
=> r1_tarski(A,k4_classes1(A)) ) ).
fof(t45_classes1,axiom,
! [A] :
( v3_ordinal1(A)
=> ! [B] :
( r2_hidden(B,k4_classes1(A))
=> ( ~ r2_tarski(B,k4_classes1(A))
& r2_hidden(k1_card_1(B),k1_card_1(k4_classes1(A))) ) ) ) ).
fof(t46_classes1,axiom,
! [A,B] :
( v3_ordinal1(B)
=> ( r1_tarski(A,k4_classes1(B))
<=> r1_tarski(k1_zfmisc_1(A),k4_classes1(k1_ordinal1(B))) ) ) ).
fof(t47_classes1,axiom,
! [A,B,C] :
( v3_ordinal1(C)
=> ( ( r1_tarski(A,B)
& r2_hidden(B,k4_classes1(C)) )
=> r2_hidden(A,k4_classes1(C)) ) ) ).
fof(t48_classes1,axiom,
! [A,B] :
( v3_ordinal1(B)
=> ( r2_hidden(A,k4_classes1(B))
<=> r2_hidden(k1_zfmisc_1(A),k4_classes1(k1_ordinal1(B))) ) ) ).
fof(t49_classes1,axiom,
! [A,B] :
( v3_ordinal1(B)
=> ( r2_hidden(A,k4_classes1(B))
<=> r2_hidden(k1_tarski(A),k4_classes1(k1_ordinal1(B))) ) ) ).
fof(t50_classes1,axiom,
! [A,B,C] :
( v3_ordinal1(C)
=> ( ( r2_hidden(A,k4_classes1(C))
& r2_hidden(B,k4_classes1(C)) )
<=> r2_hidden(k2_tarski(A,B),k4_classes1(k1_ordinal1(C))) ) ) ).
fof(t51_classes1,axiom,
! [A,B,C] :
( v3_ordinal1(C)
=> ( ( r2_hidden(A,k4_classes1(C))
& r2_hidden(B,k4_classes1(C)) )
<=> r2_hidden(k4_tarski(A,B),k4_classes1(k1_ordinal1(k1_ordinal1(C)))) ) ) ).
fof(t52_classes1,axiom,
! [A,B] :
( v3_ordinal1(B)
=> ( ( v1_ordinal1(A)
& k3_xboole_0(k4_classes1(B),k1_classes1(A)) = k3_xboole_0(k4_classes1(k1_ordinal1(B)),k1_classes1(A)) )
=> r1_tarski(k1_classes1(A),k4_classes1(B)) ) ) ).
fof(t53_classes1,axiom,
! [A] :
~ ( v1_ordinal1(A)
& ! [B] :
( v3_ordinal1(B)
=> ~ r1_tarski(k1_classes1(A),k4_classes1(B)) ) ) ).
fof(t54_classes1,axiom,
! [A] :
( v1_ordinal1(A)
=> r1_tarski(k3_tarski(A),A) ) ).
fof(t55_classes1,axiom,
! [A,B] :
( ( v1_ordinal1(A)
& v1_ordinal1(B) )
=> v1_ordinal1(k2_xboole_0(A,B)) ) ).
fof(t56_classes1,axiom,
! [A,B] :
( ( v1_ordinal1(A)
& v1_ordinal1(B) )
=> v1_ordinal1(k3_xboole_0(A,B)) ) ).
fof(d7_classes1,axiom,
! [A,B] :
( B = k5_classes1(A)
<=> ! [C] :
( r2_hidden(C,B)
<=> ? [D] :
( v1_relat_1(D)
& v1_funct_1(D)
& ? [E] :
( m2_subset_1(E,k1_numbers,k5_numbers)
& r2_hidden(C,k1_funct_1(D,E))
& k1_relat_1(D) = k5_numbers
& k1_funct_1(D,np__0) = A
& ! [F] :
( m2_subset_1(F,k1_numbers,k5_numbers)
=> k1_funct_1(D,k1_nat_1(F,np__1)) = k3_tarski(k1_funct_1(D,F)) ) ) ) ) ) ).
fof(t57_classes1,axiom,
$true ).
fof(t58_classes1,axiom,
! [A] : v1_ordinal1(k5_classes1(A)) ).
fof(t59_classes1,axiom,
! [A] : r1_tarski(A,k5_classes1(A)) ).
fof(t60_classes1,axiom,
! [A,B] :
( ( r1_tarski(A,B)
& v1_ordinal1(B) )
=> r1_tarski(k5_classes1(A),B) ) ).
fof(t61_classes1,axiom,
! [A,B] :
( ( ! [C] :
( ( r1_tarski(A,C)
& v1_ordinal1(C) )
=> r1_tarski(B,C) )
& r1_tarski(A,B)
& v1_ordinal1(B) )
=> k5_classes1(A) = B ) ).
fof(t62_classes1,axiom,
! [A] :
( v1_ordinal1(A)
=> k5_classes1(A) = A ) ).
fof(t63_classes1,axiom,
k5_classes1(k1_xboole_0) = k1_xboole_0 ).
fof(t64_classes1,axiom,
! [A] :
( v3_ordinal1(A)
=> k5_classes1(A) = A ) ).
fof(t65_classes1,axiom,
! [A,B] :
( r1_tarski(A,B)
=> r1_tarski(k5_classes1(A),k5_classes1(B)) ) ).
fof(t66_classes1,axiom,
! [A] : k5_classes1(k5_classes1(A)) = k5_classes1(A) ).
fof(t67_classes1,axiom,
! [A,B] : k5_classes1(k2_xboole_0(A,B)) = k2_xboole_0(k5_classes1(A),k5_classes1(B)) ).
fof(t68_classes1,axiom,
! [A,B] : r1_tarski(k5_classes1(k3_xboole_0(A,B)),k3_xboole_0(k5_classes1(A),k5_classes1(B))) ).
fof(t69_classes1,axiom,
! [A] :
? [B] :
( v3_ordinal1(B)
& r1_tarski(A,k4_classes1(B)) ) ).
fof(d8_classes1,axiom,
! [A,B] :
( v3_ordinal1(B)
=> ( B = k6_classes1(A)
<=> ( r1_tarski(A,k4_classes1(B))
& ! [C] :
( v3_ordinal1(C)
=> ( r1_tarski(A,k4_classes1(C))
=> r1_ordinal1(B,C) ) ) ) ) ) ).
fof(t70_classes1,axiom,
$true ).
fof(t71_classes1,axiom,
! [A] : k6_classes1(k1_zfmisc_1(A)) = k1_ordinal1(k6_classes1(A)) ).
fof(t72_classes1,axiom,
! [A] :
( v3_ordinal1(A)
=> k6_classes1(k4_classes1(A)) = A ) ).
fof(t73_classes1,axiom,
! [A,B] :
( v3_ordinal1(B)
=> ( r1_tarski(A,k4_classes1(B))
<=> r1_ordinal1(k6_classes1(A),B) ) ) ).
fof(t74_classes1,axiom,
! [A,B] :
( v3_ordinal1(B)
=> ( r2_hidden(A,k4_classes1(B))
<=> r2_hidden(k6_classes1(A),B) ) ) ).
fof(t75_classes1,axiom,
! [A,B] :
( r1_tarski(A,B)
=> r1_ordinal1(k6_classes1(A),k6_classes1(B)) ) ).
fof(t76_classes1,axiom,
! [A,B] :
( r2_hidden(A,B)
=> r2_hidden(k6_classes1(A),k6_classes1(B)) ) ).
fof(t77_classes1,axiom,
! [A,B] :
( v3_ordinal1(B)
=> ( r1_ordinal1(k6_classes1(A),B)
<=> ! [C] :
( r2_hidden(C,A)
=> r2_hidden(k6_classes1(C),B) ) ) ) ).
fof(t78_classes1,axiom,
! [A,B] :
( v3_ordinal1(B)
=> ( r1_ordinal1(B,k6_classes1(A))
<=> ! [C] :
( v3_ordinal1(C)
=> ~ ( r2_hidden(C,B)
& ! [D] :
~ ( r2_hidden(D,A)
& r1_ordinal1(C,k6_classes1(D)) ) ) ) ) ) ).
fof(t79_classes1,axiom,
! [A] :
( k6_classes1(A) = k1_xboole_0
<=> A = k1_xboole_0 ) ).
fof(t80_classes1,axiom,
! [A,B] :
( v3_ordinal1(B)
=> ~ ( k6_classes1(A) = k1_ordinal1(B)
& ! [C] :
~ ( r2_hidden(C,A)
& k6_classes1(C) = B ) ) ) ).
fof(t81_classes1,axiom,
! [A] :
( v3_ordinal1(A)
=> k6_classes1(A) = A ) ).
fof(t82_classes1,axiom,
! [A] :
( k6_classes1(k1_classes1(A)) != k1_xboole_0
& v4_ordinal1(k6_classes1(k1_classes1(A))) ) ).
fof(dt_k1_classes1,axiom,
$true ).
fof(dt_k2_classes1,axiom,
$true ).
fof(dt_k3_classes1,axiom,
! [A,B] :
( v3_ordinal1(B)
=> m1_subset_1(k3_classes1(A,B),k1_zfmisc_1(k1_classes1(A))) ) ).
fof(redefinition_k3_classes1,axiom,
! [A,B] :
( v3_ordinal1(B)
=> k3_classes1(A,B) = k2_classes1(A,B) ) ).
fof(dt_k4_classes1,axiom,
$true ).
fof(dt_k5_classes1,axiom,
$true ).
fof(dt_k6_classes1,axiom,
! [A] : v3_ordinal1(k6_classes1(A)) ).
fof(d5_classes1,axiom,
! [A,B] :
( v3_ordinal1(B)
=> ! [C] :
( C = k2_classes1(A,B)
<=> ? [D] :
( v1_relat_1(D)
& v1_funct_1(D)
& v5_ordinal1(D)
& C = k1_ordinal2(D)
& k1_relat_1(D) = k1_ordinal1(B)
& k1_funct_1(D,k1_xboole_0) = k1_tarski(A)
& ! [E] :
( v3_ordinal1(E)
=> ( r2_hidden(k1_ordinal1(E),k1_ordinal1(B))
=> k1_funct_1(D,k1_ordinal1(E)) = k2_xboole_0(k2_xboole_0(a_3_0_classes1(A,D,E),a_3_1_classes1(A,D,E)),k3_xboole_0(k1_zfmisc_1(k1_funct_1(D,E)),k1_classes1(A))) ) )
& ! [E] :
( v3_ordinal1(E)
=> ( ( r2_hidden(E,k1_ordinal1(B))
& v4_ordinal1(E) )
=> ( E = k1_xboole_0
| k1_funct_1(D,E) = k3_xboole_0(k3_tarski(k2_relat_1(k2_ordinal1(D,E))),k1_classes1(A)) ) ) ) ) ) ) ).
fof(t11_classes1,axiom,
! [A,B] :
( v3_ordinal1(B)
=> k3_classes1(A,k1_ordinal1(B)) = k2_xboole_0(k2_xboole_0(a_2_0_classes1(A,B),a_2_1_classes1(A,B)),k3_xboole_0(k1_zfmisc_1(k3_classes1(A,B)),k1_classes1(A))) ) ).
fof(t12_classes1,axiom,
! [A,B] :
( v3_ordinal1(B)
=> ( v4_ordinal1(B)
=> ( B = k1_xboole_0
| k3_classes1(A,B) = a_2_2_classes1(A,B) ) ) ) ).
fof(fraenkel_a_3_0_classes1,axiom,
! [A,B,C,D] :
( ( v1_relat_1(C)
& v1_funct_1(C)
& v5_ordinal1(C)
& v3_ordinal1(D) )
=> ( r2_hidden(A,a_3_0_classes1(B,C,D))
<=> ? [E] :
( m1_subset_1(E,k1_classes1(B))
& A = E
& ? [F] :
( m1_subset_1(F,k1_classes1(B))
& r2_hidden(F,k1_funct_1(C,D))
& r1_tarski(E,F) ) ) ) ) ).
fof(fraenkel_a_3_1_classes1,axiom,
! [A,B,C,D] :
( ( v1_relat_1(C)
& v1_funct_1(C)
& v5_ordinal1(C)
& v3_ordinal1(D) )
=> ( r2_hidden(A,a_3_1_classes1(B,C,D))
<=> ? [E] :
( m1_subset_1(E,k1_classes1(B))
& A = k1_zfmisc_1(E)
& r2_hidden(E,k1_funct_1(C,D)) ) ) ) ).
fof(fraenkel_a_2_0_classes1,axiom,
! [A,B,C] :
( v3_ordinal1(C)
=> ( r2_hidden(A,a_2_0_classes1(B,C))
<=> ? [D] :
( m1_subset_1(D,k1_classes1(B))
& A = D
& ? [E] :
( m1_subset_1(E,k1_classes1(B))
& r2_hidden(E,k3_classes1(B,C))
& r1_tarski(D,E) ) ) ) ) ).
fof(fraenkel_a_2_1_classes1,axiom,
! [A,B,C] :
( v3_ordinal1(C)
=> ( r2_hidden(A,a_2_1_classes1(B,C))
<=> ? [D] :
( m1_subset_1(D,k1_classes1(B))
& A = k1_zfmisc_1(D)
& r2_hidden(D,k3_classes1(B,C)) ) ) ) ).
fof(fraenkel_a_2_2_classes1,axiom,
! [A,B,C] :
( v3_ordinal1(C)
=> ( r2_hidden(A,a_2_2_classes1(B,C))
<=> ? [D] :
( m1_subset_1(D,k1_classes1(B))
& A = D
& ? [E] :
( v3_ordinal1(E)
& r2_hidden(E,C)
& r2_hidden(D,k3_classes1(B,E)) ) ) ) ) ).
%------------------------------------------------------------------------------