SET007 Axioms: SET007+627.ax


%------------------------------------------------------------------------------
% File     : SET007+627 : TPTP v9.0.0. Released v3.4.0.
% Domain   : Set Theory
% Axioms   : Predicate Calculus for Boolean Valued Functions. Part VI
% Version  : [Urb08] axioms.
% English  :

% Refs     : [Mat90] Matuszewski (1990), Formalized Mathematics
%          : [Urb07] Urban (2007), MPTP 0.2: Design, Implementation, and In
%          : [Urb08] Urban (2006), Email to G. Sutcliffe
% Source   : [Urb08]
% Names    : bvfunc14 [Urb08]

% Status   : Satisfiable
% Syntax   : Number of formulae    :   33 (   4 unt;   0 def)
%            Number of atoms       :  359 ( 182 equ)
%            Maximal formula atoms :   24 (  10 avg)
%            Number of connectives :  393 (  67   ~;  82   |;  72   &)
%                                         (   0 <=>; 172  =>;   0  <=;   0 <~>)
%            Maximal formula depth :   35 (  17 avg)
%            Maximal term depth    :    6 (   1 avg)
%            Number of predicates  :    9 (   7 usr;   1 prp; 0-2 aty)
%            Number of functors    :   16 (  16 usr;   0 con; 1-5 aty)
%            Number of variables   :  218 ( 218   !;   0   ?)
% SPC      : 

% Comments : The individual reference can be found in [Mat90] by looking for
%            the name provided by [Urb08].
%          : Translated by MPTP from the Mizar Mathematical Library 4.48.930.
%          : These set theory axioms are used in encodings of problems in
%            various domains, including ALG, CAT, GRP, LAT, SET, and TOP.
%------------------------------------------------------------------------------
fof(t1_bvfunc14,axiom,
    ! [A] :
      ( ~ v1_xboole_0(A)
     => ! [B] :
          ( m1_subset_1(B,A)
         => ! [C] :
              ( m1_eqrel_1(C,A)
             => ! [D] :
                  ( m1_eqrel_1(D,A)
                 => k22_bvfunc_1(A,B,k2_partit1(A,C,D)) = k5_subset_1(A,k22_bvfunc_1(A,B,C),k22_bvfunc_1(A,B,D)) ) ) ) ) ).

fof(t2_bvfunc14,axiom,
    ! [A] :
      ( ~ v1_xboole_0(A)
     => ! [B] :
          ( m1_subset_1(B,k1_zfmisc_1(k1_bvfunc_2(A)))
         => ! [C] :
              ( m1_eqrel_1(C,A)
             => ! [D] :
                  ( m1_eqrel_1(D,A)
                 => ( B = k2_tarski(C,D)
                   => ( C = D
                      | k2_bvfunc_2(A,B) = k2_partit1(A,C,D) ) ) ) ) ) ) ).

fof(t3_bvfunc14,axiom,
    ! [A] :
      ( ~ v1_xboole_0(A)
     => ! [B] :
          ( m1_subset_1(B,k1_zfmisc_1(k1_bvfunc_2(A)))
         => ! [C] :
              ( m1_eqrel_1(C,A)
             => ! [D] :
                  ( m1_eqrel_1(D,A)
                 => ! [E] :
                      ( m1_eqrel_1(E,A)
                     => ( B = k1_enumset1(C,D,E)
                       => ( C = D
                          | D = E
                          | E = C
                          | k2_bvfunc_2(A,B) = k2_partit1(A,k2_partit1(A,C,D),E) ) ) ) ) ) ) ) ).

fof(t4_bvfunc14,axiom,
    ! [A] :
      ( ~ v1_xboole_0(A)
     => ! [B] :
          ( m1_subset_1(B,k1_zfmisc_1(k1_bvfunc_2(A)))
         => ! [C] :
              ( m1_eqrel_1(C,A)
             => ! [D] :
                  ( m1_eqrel_1(D,A)
                 => ! [E] :
                      ( m1_eqrel_1(E,A)
                     => ( B = k1_enumset1(C,D,E)
                       => ( C = D
                          | E = C
                          | k5_bvfunc_2(A,C,B) = k2_partit1(A,D,E) ) ) ) ) ) ) ) ).

fof(t5_bvfunc14,axiom,
    ! [A] :
      ( ~ v1_xboole_0(A)
     => ! [B] :
          ( m1_subset_1(B,k1_zfmisc_1(k1_bvfunc_2(A)))
         => ! [C] :
              ( m1_eqrel_1(C,A)
             => ! [D] :
                  ( m1_eqrel_1(D,A)
                 => ! [E] :
                      ( m1_eqrel_1(E,A)
                     => ( B = k1_enumset1(C,D,E)
                       => ( C = D
                          | D = E
                          | k5_bvfunc_2(A,D,B) = k2_partit1(A,E,C) ) ) ) ) ) ) ) ).

fof(t6_bvfunc14,axiom,
    ! [A] :
      ( ~ v1_xboole_0(A)
     => ! [B] :
          ( m1_subset_1(B,k1_zfmisc_1(k1_bvfunc_2(A)))
         => ! [C] :
              ( m1_eqrel_1(C,A)
             => ! [D] :
                  ( m1_eqrel_1(D,A)
                 => ! [E] :
                      ( m1_eqrel_1(E,A)
                     => ( B = k1_enumset1(C,D,E)
                       => ( D = E
                          | E = C
                          | k5_bvfunc_2(A,E,B) = k2_partit1(A,C,D) ) ) ) ) ) ) ) ).

fof(t7_bvfunc14,axiom,
    ! [A] :
      ( ~ v1_xboole_0(A)
     => ! [B] :
          ( m1_subset_1(B,k1_zfmisc_1(k1_bvfunc_2(A)))
         => ! [C] :
              ( m1_eqrel_1(C,A)
             => ! [D] :
                  ( m1_eqrel_1(D,A)
                 => ! [E] :
                      ( m1_eqrel_1(E,A)
                     => ! [F] :
                          ( m1_eqrel_1(F,A)
                         => ( B = k2_enumset1(C,D,E,F)
                           => ( C = D
                              | C = E
                              | C = F
                              | k5_bvfunc_2(A,C,B) = k2_partit1(A,k2_partit1(A,D,E),F) ) ) ) ) ) ) ) ) ).

fof(t8_bvfunc14,axiom,
    ! [A] :
      ( ~ v1_xboole_0(A)
     => ! [B] :
          ( m1_subset_1(B,k1_zfmisc_1(k1_bvfunc_2(A)))
         => ! [C] :
              ( m1_eqrel_1(C,A)
             => ! [D] :
                  ( m1_eqrel_1(D,A)
                 => ! [E] :
                      ( m1_eqrel_1(E,A)
                     => ! [F] :
                          ( m1_eqrel_1(F,A)
                         => ( B = k2_enumset1(C,D,E,F)
                           => ( C = D
                              | D = E
                              | D = F
                              | k5_bvfunc_2(A,D,B) = k2_partit1(A,k2_partit1(A,C,E),F) ) ) ) ) ) ) ) ) ).

fof(t9_bvfunc14,axiom,
    ! [A] :
      ( ~ v1_xboole_0(A)
     => ! [B] :
          ( m1_subset_1(B,k1_zfmisc_1(k1_bvfunc_2(A)))
         => ! [C] :
              ( m1_eqrel_1(C,A)
             => ! [D] :
                  ( m1_eqrel_1(D,A)
                 => ! [E] :
                      ( m1_eqrel_1(E,A)
                     => ! [F] :
                          ( m1_eqrel_1(F,A)
                         => ( B = k2_enumset1(C,D,E,F)
                           => ( C = E
                              | D = E
                              | E = F
                              | k5_bvfunc_2(A,E,B) = k2_partit1(A,k2_partit1(A,C,D),F) ) ) ) ) ) ) ) ) ).

fof(t10_bvfunc14,axiom,
    ! [A] :
      ( ~ v1_xboole_0(A)
     => ! [B] :
          ( m1_subset_1(B,k1_zfmisc_1(k1_bvfunc_2(A)))
         => ! [C] :
              ( m1_eqrel_1(C,A)
             => ! [D] :
                  ( m1_eqrel_1(D,A)
                 => ! [E] :
                      ( m1_eqrel_1(E,A)
                     => ! [F] :
                          ( m1_eqrel_1(F,A)
                         => ( B = k2_enumset1(C,D,E,F)
                           => ( C = F
                              | D = F
                              | E = F
                              | k5_bvfunc_2(A,F,B) = k2_partit1(A,k2_partit1(A,C,E),D) ) ) ) ) ) ) ) ) ).

fof(t11_bvfunc14,axiom,
    $true ).

fof(t12_bvfunc14,axiom,
    $true ).

fof(t13_bvfunc14,axiom,
    $true ).

fof(t14_bvfunc14,axiom,
    ! [A,B,C,D,E,F] : k1_relat_1(k1_funct_4(k1_funct_4(k3_cqc_lang(A,D),k3_cqc_lang(B,E)),k3_cqc_lang(C,F))) = k1_enumset1(A,B,C) ).

fof(t15_bvfunc14,axiom,
    ! [A] :
      ( ( v1_relat_1(A)
        & v1_funct_1(A) )
     => ! [B,C,D,E] :
          ( B != C
         => k1_funct_1(k1_funct_4(k1_funct_4(A,k3_cqc_lang(B,D)),k3_cqc_lang(C,E)),B) = D ) ) ).

fof(t16_bvfunc14,axiom,
    ! [A,B,C,D,E,F] :
      ~ ( A != B
        & C != A
        & k1_funct_1(k1_funct_4(k1_funct_4(k3_cqc_lang(A,D),k3_cqc_lang(B,E)),k3_cqc_lang(C,F)),A) != D ) ).

fof(t17_bvfunc14,axiom,
    ! [A,B,C,D,E,F,G] :
      ( ( v1_relat_1(G)
        & v1_funct_1(G) )
     => ( G = k1_funct_4(k1_funct_4(k3_cqc_lang(A,D),k3_cqc_lang(B,E)),k3_cqc_lang(C,F))
       => k2_relat_1(G) = k1_enumset1(k1_funct_1(G,A),k1_funct_1(G,B),k1_funct_1(G,C)) ) ) ).

fof(t18_bvfunc14,axiom,
    ! [A] :
      ( ~ v1_xboole_0(A)
     => ! [B] :
          ( m1_subset_1(B,k1_zfmisc_1(k1_bvfunc_2(A)))
         => ! [C] :
              ( m1_eqrel_1(C,A)
             => ! [D] :
                  ( m1_eqrel_1(D,A)
                 => ! [E] :
                      ( m1_eqrel_1(E,A)
                     => ! [F] :
                          ( m1_eqrel_1(F,A)
                         => ! [G] :
                              ( ( v1_relat_1(G)
                                & v1_funct_1(G) )
                             => ! [H,I,J,K] :
                                  ( ( B = k2_enumset1(C,D,E,F)
                                    & G = k1_funct_4(k1_funct_4(k1_funct_4(k3_cqc_lang(D,I),k3_cqc_lang(E,J)),k3_cqc_lang(F,K)),k3_cqc_lang(C,H)) )
                                 => ( C = D
                                    | C = E
                                    | C = F
                                    | D = E
                                    | D = F
                                    | E = F
                                    | ( k1_funct_1(G,D) = I
                                      & k1_funct_1(G,E) = J
                                      & k1_funct_1(G,F) = K ) ) ) ) ) ) ) ) ) ) ).

fof(t19_bvfunc14,axiom,
    ! [A,B,C,D,E] :
      ( ( v1_relat_1(E)
        & v1_funct_1(E) )
     => ! [F,G,H,I] :
          ( E = k1_funct_4(k1_funct_4(k1_funct_4(k3_cqc_lang(B,G),k3_cqc_lang(C,H)),k3_cqc_lang(D,I)),k3_cqc_lang(A,F))
         => k1_relat_1(E) = k2_enumset1(A,B,C,D) ) ) ).

fof(t20_bvfunc14,axiom,
    ! [A] :
      ( ~ v1_xboole_0(A)
     => ! [B] :
          ( m1_subset_1(B,k1_zfmisc_1(k1_bvfunc_2(A)))
         => ! [C] :
              ( m1_eqrel_1(C,A)
             => ! [D] :
                  ( m1_eqrel_1(D,A)
                 => ! [E] :
                      ( m1_eqrel_1(E,A)
                     => ! [F] :
                          ( m1_eqrel_1(F,A)
                         => ! [G] :
                              ( ( v1_relat_1(G)
                                & v1_funct_1(G) )
                             => ! [H,I,J,K] :
                                  ( ( B = k2_enumset1(C,D,E,F)
                                    & G = k1_funct_4(k1_funct_4(k1_funct_4(k3_cqc_lang(D,I),k3_cqc_lang(E,J)),k3_cqc_lang(F,K)),k3_cqc_lang(C,H)) )
                                 => k2_relat_1(G) = k2_enumset1(k1_funct_1(G,C),k1_funct_1(G,D),k1_funct_1(G,E),k1_funct_1(G,F)) ) ) ) ) ) ) ) ) ).

fof(t21_bvfunc14,axiom,
    ! [A] :
      ( ~ v1_xboole_0(A)
     => ! [B] :
          ( m1_subset_1(B,k1_zfmisc_1(k1_bvfunc_2(A)))
         => ! [C] :
              ( m1_eqrel_1(C,A)
             => ! [D] :
                  ( m1_eqrel_1(D,A)
                 => ! [E] :
                      ( m1_eqrel_1(E,A)
                     => ! [F] :
                          ( m1_eqrel_1(F,A)
                         => ! [G] :
                              ( m1_subset_1(G,A)
                             => ! [H] :
                                  ( m1_subset_1(H,A)
                                 => ! [I] :
                                      ( ( v1_relat_1(I)
                                        & v1_funct_1(I) )
                                     => ~ ( v2_bvfunc_2(B,A)
                                          & B = k2_enumset1(C,D,E,F)
                                          & C != D
                                          & C != E
                                          & C != F
                                          & D != E
                                          & D != F
                                          & E != F
                                          & r1_xboole_0(k22_bvfunc_1(A,H,k2_partit1(A,k2_partit1(A,D,E),F)),k22_bvfunc_1(A,G,C)) ) ) ) ) ) ) ) ) ) ) ).

fof(t22_bvfunc14,axiom,
    ! [A] :
      ( ~ v1_xboole_0(A)
     => ! [B] :
          ( m1_subset_1(B,k1_zfmisc_1(k1_bvfunc_2(A)))
         => ! [C] :
              ( m1_eqrel_1(C,A)
             => ! [D] :
                  ( m1_eqrel_1(D,A)
                 => ! [E] :
                      ( m1_eqrel_1(E,A)
                     => ! [F] :
                          ( m1_eqrel_1(F,A)
                         => ! [G] :
                              ( m1_subset_1(G,A)
                             => ! [H] :
                                  ( m1_subset_1(H,A)
                                 => ~ ( v2_bvfunc_2(B,A)
                                      & B = k2_enumset1(C,D,E,F)
                                      & C != D
                                      & C != E
                                      & C != F
                                      & D != E
                                      & D != F
                                      & E != F
                                      & k22_bvfunc_1(A,G,k2_partit1(A,E,F)) = k22_bvfunc_1(A,H,k2_partit1(A,E,F))
                                      & r1_xboole_0(k22_bvfunc_1(A,H,k5_bvfunc_2(A,C,B)),k22_bvfunc_1(A,G,k5_bvfunc_2(A,D,B))) ) ) ) ) ) ) ) ) ) ).

fof(t23_bvfunc14,axiom,
    ! [A] :
      ( ~ v1_xboole_0(A)
     => ! [B] :
          ( m1_subset_1(B,k1_zfmisc_1(k1_bvfunc_2(A)))
         => ! [C] :
              ( m1_eqrel_1(C,A)
             => ! [D] :
                  ( m1_eqrel_1(D,A)
                 => ! [E] :
                      ( m1_eqrel_1(E,A)
                     => ! [F] :
                          ( m1_subset_1(F,A)
                         => ! [G] :
                              ( m1_subset_1(G,A)
                             => ~ ( v2_bvfunc_2(B,A)
                                  & B = k1_enumset1(C,D,E)
                                  & C != D
                                  & D != E
                                  & E != C
                                  & k22_bvfunc_1(A,F,E) = k22_bvfunc_1(A,G,E)
                                  & r1_xboole_0(k22_bvfunc_1(A,G,k5_bvfunc_2(A,C,B)),k22_bvfunc_1(A,F,k5_bvfunc_2(A,D,B))) ) ) ) ) ) ) ) ) ).

fof(t24_bvfunc14,axiom,
    ! [A] :
      ( ~ v1_xboole_0(A)
     => ! [B] :
          ( m1_subset_1(B,k1_zfmisc_1(k1_bvfunc_2(A)))
         => ! [C] :
              ( m1_eqrel_1(C,A)
             => ! [D] :
                  ( m1_eqrel_1(D,A)
                 => ! [E] :
                      ( m1_eqrel_1(E,A)
                     => ! [F] :
                          ( m1_eqrel_1(F,A)
                         => ! [G] :
                              ( m1_eqrel_1(G,A)
                             => ( B = k3_enumset1(C,D,E,F,G)
                               => ( C = D
                                  | C = E
                                  | C = F
                                  | C = G
                                  | k5_bvfunc_2(A,C,B) = k2_partit1(A,k2_partit1(A,k2_partit1(A,D,E),F),G) ) ) ) ) ) ) ) ) ) ).

fof(t25_bvfunc14,axiom,
    ! [A] :
      ( ~ v1_xboole_0(A)
     => ! [B] :
          ( m1_subset_1(B,k1_zfmisc_1(k1_bvfunc_2(A)))
         => ! [C] :
              ( m1_eqrel_1(C,A)
             => ! [D] :
                  ( m1_eqrel_1(D,A)
                 => ! [E] :
                      ( m1_eqrel_1(E,A)
                     => ! [F] :
                          ( m1_eqrel_1(F,A)
                         => ! [G] :
                              ( m1_eqrel_1(G,A)
                             => ( ( v2_bvfunc_2(B,A)
                                  & B = k3_enumset1(C,D,E,F,G) )
                               => ( C = D
                                  | C = E
                                  | C = F
                                  | C = G
                                  | D = E
                                  | D = F
                                  | D = G
                                  | E = F
                                  | E = G
                                  | F = G
                                  | k5_bvfunc_2(A,D,B) = k2_partit1(A,k2_partit1(A,k2_partit1(A,C,E),F),G) ) ) ) ) ) ) ) ) ) ).

fof(t26_bvfunc14,axiom,
    ! [A] :
      ( ~ v1_xboole_0(A)
     => ! [B] :
          ( m1_subset_1(B,k1_zfmisc_1(k1_bvfunc_2(A)))
         => ! [C] :
              ( m1_eqrel_1(C,A)
             => ! [D] :
                  ( m1_eqrel_1(D,A)
                 => ! [E] :
                      ( m1_eqrel_1(E,A)
                     => ! [F] :
                          ( m1_eqrel_1(F,A)
                         => ! [G] :
                              ( m1_eqrel_1(G,A)
                             => ( ( v2_bvfunc_2(B,A)
                                  & B = k3_enumset1(C,D,E,F,G) )
                               => ( C = D
                                  | C = E
                                  | C = F
                                  | C = G
                                  | D = E
                                  | D = F
                                  | D = G
                                  | E = F
                                  | E = G
                                  | F = G
                                  | k5_bvfunc_2(A,E,B) = k2_partit1(A,k2_partit1(A,k2_partit1(A,C,D),F),G) ) ) ) ) ) ) ) ) ) ).

fof(t27_bvfunc14,axiom,
    ! [A] :
      ( ~ v1_xboole_0(A)
     => ! [B] :
          ( m1_subset_1(B,k1_zfmisc_1(k1_bvfunc_2(A)))
         => ! [C] :
              ( m1_eqrel_1(C,A)
             => ! [D] :
                  ( m1_eqrel_1(D,A)
                 => ! [E] :
                      ( m1_eqrel_1(E,A)
                     => ! [F] :
                          ( m1_eqrel_1(F,A)
                         => ! [G] :
                              ( m1_eqrel_1(G,A)
                             => ( ( v2_bvfunc_2(B,A)
                                  & B = k3_enumset1(C,D,E,F,G) )
                               => ( C = D
                                  | C = E
                                  | C = F
                                  | C = G
                                  | D = E
                                  | D = F
                                  | D = G
                                  | E = F
                                  | E = G
                                  | F = G
                                  | k5_bvfunc_2(A,F,B) = k2_partit1(A,k2_partit1(A,k2_partit1(A,C,D),E),G) ) ) ) ) ) ) ) ) ) ).

fof(t28_bvfunc14,axiom,
    ! [A] :
      ( ~ v1_xboole_0(A)
     => ! [B] :
          ( m1_subset_1(B,k1_zfmisc_1(k1_bvfunc_2(A)))
         => ! [C] :
              ( m1_eqrel_1(C,A)
             => ! [D] :
                  ( m1_eqrel_1(D,A)
                 => ! [E] :
                      ( m1_eqrel_1(E,A)
                     => ! [F] :
                          ( m1_eqrel_1(F,A)
                         => ! [G] :
                              ( m1_eqrel_1(G,A)
                             => ( ( v2_bvfunc_2(B,A)
                                  & B = k3_enumset1(C,D,E,F,G) )
                               => ( C = D
                                  | C = E
                                  | C = F
                                  | C = G
                                  | D = E
                                  | D = F
                                  | D = G
                                  | E = F
                                  | E = G
                                  | F = G
                                  | k5_bvfunc_2(A,G,B) = k2_partit1(A,k2_partit1(A,k2_partit1(A,C,D),E),F) ) ) ) ) ) ) ) ) ) ).

fof(t29_bvfunc14,axiom,
    ! [A,B,C,D,E,F] :
      ( ( v1_relat_1(F)
        & v1_funct_1(F) )
     => ! [G,H,I,J,K] :
          ( F = k1_funct_4(k1_funct_4(k1_funct_4(k1_funct_4(k3_cqc_lang(B,H),k3_cqc_lang(C,I)),k3_cqc_lang(D,J)),k3_cqc_lang(E,K)),k3_cqc_lang(A,G))
         => ( A = B
            | A = C
            | A = D
            | A = E
            | B = C
            | B = D
            | B = E
            | C = D
            | C = E
            | D = E
            | ( k1_funct_1(F,A) = G
              & k1_funct_1(F,B) = H
              & k1_funct_1(F,C) = I
              & k1_funct_1(F,D) = J
              & k1_funct_1(F,E) = K ) ) ) ) ).

fof(t30_bvfunc14,axiom,
    ! [A,B,C,D,E,F] :
      ( ( v1_relat_1(F)
        & v1_funct_1(F) )
     => ! [G,H,I,J,K] :
          ( F = k1_funct_4(k1_funct_4(k1_funct_4(k1_funct_4(k3_cqc_lang(B,H),k3_cqc_lang(C,I)),k3_cqc_lang(D,J)),k3_cqc_lang(E,K)),k3_cqc_lang(A,G))
         => k1_relat_1(F) = k3_enumset1(A,B,C,D,E) ) ) ).

fof(t31_bvfunc14,axiom,
    ! [A,B,C,D,E,F] :
      ( ( v1_relat_1(F)
        & v1_funct_1(F) )
     => ! [G,H,I,J,K] :
          ( F = k1_funct_4(k1_funct_4(k1_funct_4(k1_funct_4(k3_cqc_lang(B,H),k3_cqc_lang(C,I)),k3_cqc_lang(D,J)),k3_cqc_lang(E,K)),k3_cqc_lang(A,G))
         => k2_relat_1(F) = k3_enumset1(k1_funct_1(F,A),k1_funct_1(F,B),k1_funct_1(F,C),k1_funct_1(F,D),k1_funct_1(F,E)) ) ) ).

fof(t32_bvfunc14,axiom,
    ! [A] :
      ( ~ v1_xboole_0(A)
     => ! [B] :
          ( m1_subset_1(B,k1_zfmisc_1(k1_bvfunc_2(A)))
         => ! [C] :
              ( m1_eqrel_1(C,A)
             => ! [D] :
                  ( m1_eqrel_1(D,A)
                 => ! [E] :
                      ( m1_eqrel_1(E,A)
                     => ! [F] :
                          ( m1_eqrel_1(F,A)
                         => ! [G] :
                              ( m1_eqrel_1(G,A)
                             => ! [H] :
                                  ( m1_subset_1(H,A)
                                 => ! [I] :
                                      ( m1_subset_1(I,A)
                                     => ! [J] :
                                          ( ( v1_relat_1(J)
                                            & v1_funct_1(J) )
                                         => ~ ( v2_bvfunc_2(B,A)
                                              & B = k3_enumset1(C,D,E,F,G)
                                              & C != D
                                              & C != E
                                              & C != F
                                              & C != G
                                              & D != E
                                              & D != F
                                              & D != G
                                              & E != F
                                              & E != G
                                              & F != G
                                              & r1_xboole_0(k22_bvfunc_1(A,I,k2_partit1(A,k2_partit1(A,k2_partit1(A,D,E),F),G)),k22_bvfunc_1(A,H,C)) ) ) ) ) ) ) ) ) ) ) ) ).

fof(t33_bvfunc14,axiom,
    ! [A] :
      ( ~ v1_xboole_0(A)
     => ! [B] :
          ( m1_subset_1(B,k1_zfmisc_1(k1_bvfunc_2(A)))
         => ! [C] :
              ( m1_eqrel_1(C,A)
             => ! [D] :
                  ( m1_eqrel_1(D,A)
                 => ! [E] :
                      ( m1_eqrel_1(E,A)
                     => ! [F] :
                          ( m1_eqrel_1(F,A)
                         => ! [G] :
                              ( m1_eqrel_1(G,A)
                             => ! [H] :
                                  ( m1_subset_1(H,A)
                                 => ! [I] :
                                      ( m1_subset_1(I,A)
                                     => ~ ( v2_bvfunc_2(B,A)
                                          & B = k3_enumset1(C,D,E,F,G)
                                          & C != D
                                          & C != E
                                          & C != F
                                          & C != G
                                          & D != E
                                          & D != F
                                          & D != G
                                          & E != F
                                          & E != G
                                          & F != G
                                          & k22_bvfunc_1(A,H,k2_partit1(A,k2_partit1(A,E,F),G)) = k22_bvfunc_1(A,I,k2_partit1(A,k2_partit1(A,E,F),G))
                                          & r1_xboole_0(k22_bvfunc_1(A,I,k5_bvfunc_2(A,C,B)),k22_bvfunc_1(A,H,k5_bvfunc_2(A,D,B))) ) ) ) ) ) ) ) ) ) ) ).

%------------------------------------------------------------------------------