SET007 Axioms: SET007+62.ax
%------------------------------------------------------------------------------
% File : SET007+62 : TPTP v9.0.0. Released v3.4.0.
% Domain : Set Theory
% Axioms : Cardinal Arithmetics
% Version : [Urb08] axioms.
% English :
% Refs : [Mat90] Matuszewski (1990), Formalized Mathematics
% : [Urb07] Urban (2007), MPTP 0.2: Design, Implementation, and In
% : [Urb08] Urban (2006), Email to G. Sutcliffe
% Source : [Urb08]
% Names : card_2 [Urb08]
% Status : Satisfiable
% Syntax : Number of formulae : 89 ( 20 unt; 0 def)
% Number of atoms : 246 ( 85 equ)
% Maximal formula atoms : 7 ( 2 avg)
% Number of connectives : 188 ( 31 ~; 4 |; 54 &)
% ( 4 <=>; 95 =>; 0 <=; 0 <~>)
% Maximal formula depth : 13 ( 5 avg)
% Maximal term depth : 5 ( 2 avg)
% Number of predicates : 15 ( 13 usr; 1 prp; 0-3 aty)
% Number of functors : 43 ( 43 usr; 13 con; 0-8 aty)
% Number of variables : 192 ( 189 !; 3 ?)
% SPC :
% Comments : The individual reference can be found in [Mat90] by looking for
% the name provided by [Urb08].
% : Translated by MPTP from the Mizar Mathematical Library 4.48.930.
% : These set theory axioms are used in encodings of problems in
% various domains, including ALG, CAT, GRP, LAT, SET, and TOP.
%------------------------------------------------------------------------------
fof(t1_card_2,axiom,
$true ).
fof(t2_card_2,axiom,
! [A,B] :
( r1_tarski(k1_card_1(A),k1_card_1(B))
<=> ? [C] :
( v1_relat_1(C)
& v1_funct_1(C)
& r1_tarski(A,k9_relat_1(C,B)) ) ) ).
fof(t3_card_2,axiom,
! [A,B] :
( ( v1_relat_1(B)
& v1_funct_1(B) )
=> r1_tarski(k1_card_1(k9_relat_1(B,A)),k1_card_1(A)) ) ).
fof(t4_card_2,axiom,
! [A,B] :
~ ( r2_hidden(k1_card_1(A),k1_card_1(B))
& k4_xboole_0(B,A) = k1_xboole_0 ) ).
fof(t5_card_2,axiom,
! [A,B,C] :
( ( r2_hidden(A,B)
& r2_wellord2(B,C) )
=> ( C != k1_xboole_0
& ? [D] : r2_hidden(D,C) ) ) ).
fof(t6_card_2,axiom,
! [A] :
( r2_wellord2(k1_zfmisc_1(A),k1_zfmisc_1(k1_card_1(A)))
& k1_card_1(k1_zfmisc_1(A)) = k1_card_1(k1_zfmisc_1(k1_card_1(A))) ) ).
fof(t7_card_2,axiom,
! [A,B,C] :
( r2_hidden(A,k1_funct_2(B,C))
=> ( r2_wellord2(A,B)
& k1_card_1(A) = k1_card_1(B) ) ) ).
fof(d1_card_2,axiom,
! [A] :
( v1_card_1(A)
=> ! [B] :
( v1_card_1(B)
=> k1_card_2(A,B) = k1_card_1(k14_ordinal2(A,B)) ) ) ).
fof(d2_card_2,axiom,
! [A] :
( v1_card_1(A)
=> ! [B] :
( v1_card_1(B)
=> k2_card_2(A,B) = k1_card_1(k2_zfmisc_1(A,B)) ) ) ).
fof(d3_card_2,axiom,
! [A] :
( v1_card_1(A)
=> ! [B] :
( v1_card_1(B)
=> k3_card_2(A,B) = k1_card_1(k1_funct_2(B,A)) ) ) ).
fof(t8_card_2,axiom,
$true ).
fof(t9_card_2,axiom,
$true ).
fof(t10_card_2,axiom,
$true ).
fof(t11_card_2,axiom,
! [A,B] :
( r2_wellord2(k2_zfmisc_1(A,B),k2_zfmisc_1(B,A))
& k1_card_1(k2_zfmisc_1(A,B)) = k1_card_1(k2_zfmisc_1(B,A)) ) ).
fof(t12_card_2,axiom,
! [A,B,C] :
( r2_wellord2(k2_zfmisc_1(k2_zfmisc_1(A,B),C),k2_zfmisc_1(A,k2_zfmisc_1(B,C)))
& k1_card_1(k2_zfmisc_1(k2_zfmisc_1(A,B),C)) = k1_card_1(k2_zfmisc_1(A,k2_zfmisc_1(B,C))) ) ).
fof(t13_card_2,axiom,
! [A,B] :
( r2_wellord2(A,k2_zfmisc_1(A,k1_tarski(B)))
& k1_card_1(A) = k1_card_1(k2_zfmisc_1(A,k1_tarski(B))) ) ).
fof(t14_card_2,axiom,
! [A,B] :
( r2_wellord2(k2_zfmisc_1(A,B),k2_zfmisc_1(k1_card_1(A),B))
& r2_wellord2(k2_zfmisc_1(A,B),k2_zfmisc_1(A,k1_card_1(B)))
& r2_wellord2(k2_zfmisc_1(A,B),k2_zfmisc_1(k1_card_1(A),k1_card_1(B)))
& k1_card_1(k2_zfmisc_1(A,B)) = k1_card_1(k2_zfmisc_1(k1_card_1(A),B))
& k1_card_1(k2_zfmisc_1(A,B)) = k1_card_1(k2_zfmisc_1(A,k1_card_1(B)))
& k1_card_1(k2_zfmisc_1(A,B)) = k1_card_1(k2_zfmisc_1(k1_card_1(A),k1_card_1(B))) ) ).
fof(t15_card_2,axiom,
! [A,B,C,D] :
( ( r2_wellord2(A,B)
& r2_wellord2(C,D) )
=> ( r2_wellord2(k2_zfmisc_1(A,C),k2_zfmisc_1(B,D))
& k1_card_1(k2_zfmisc_1(A,C)) = k1_card_1(k2_zfmisc_1(B,D)) ) ) ).
fof(t16_card_2,axiom,
! [A] :
( v3_ordinal1(A)
=> ! [B] :
( v3_ordinal1(B)
=> ! [C,D] :
( C != D
=> ( r2_wellord2(k14_ordinal2(A,B),k2_xboole_0(k2_zfmisc_1(A,k1_tarski(C)),k2_zfmisc_1(B,k1_tarski(D))))
& k1_card_1(k14_ordinal2(A,B)) = k1_card_1(k2_xboole_0(k2_zfmisc_1(A,k1_tarski(C)),k2_zfmisc_1(B,k1_tarski(D)))) ) ) ) ) ).
fof(t17_card_2,axiom,
! [A] :
( v1_card_1(A)
=> ! [B] :
( v1_card_1(B)
=> ! [C,D] :
( C != D
=> ( r2_wellord2(k1_card_2(A,B),k2_xboole_0(k2_zfmisc_1(A,k1_tarski(C)),k2_zfmisc_1(B,k1_tarski(D))))
& k1_card_2(A,B) = k1_card_1(k2_xboole_0(k2_zfmisc_1(A,k1_tarski(C)),k2_zfmisc_1(B,k1_tarski(D)))) ) ) ) ) ).
fof(t18_card_2,axiom,
! [A] :
( v3_ordinal1(A)
=> ! [B] :
( v3_ordinal1(B)
=> ( r2_wellord2(k15_ordinal2(A,B),k2_zfmisc_1(A,B))
& k1_card_1(k15_ordinal2(A,B)) = k1_card_1(k2_zfmisc_1(A,B)) ) ) ) ).
fof(t19_card_2,axiom,
( np__0 = k1_card_1(k1_xboole_0)
& np__1 = k1_card_1(k4_ordinal2)
& np__2 = k1_card_1(k1_ordinal1(k4_ordinal2)) ) ).
fof(t20_card_2,axiom,
np__1 = k4_ordinal2 ).
fof(t21_card_2,axiom,
$true ).
fof(t22_card_2,axiom,
( np__2 = k2_tarski(k1_xboole_0,k4_ordinal2)
& np__2 = k1_ordinal1(k4_ordinal2) ) ).
fof(t23_card_2,axiom,
! [A,B,C,D,E,F,G,H] :
( ( r2_wellord2(A,B)
& r2_wellord2(C,D) )
=> ( E = F
| G = H
| ( r2_wellord2(k2_xboole_0(k2_zfmisc_1(A,k1_tarski(E)),k2_zfmisc_1(C,k1_tarski(F))),k2_xboole_0(k2_zfmisc_1(B,k1_tarski(G)),k2_zfmisc_1(D,k1_tarski(H))))
& k1_card_1(k2_xboole_0(k2_zfmisc_1(A,k1_tarski(E)),k2_zfmisc_1(C,k1_tarski(F)))) = k1_card_1(k2_xboole_0(k2_zfmisc_1(B,k1_tarski(G)),k2_zfmisc_1(D,k1_tarski(H)))) ) ) ) ).
fof(t24_card_2,axiom,
! [A] :
( v3_ordinal1(A)
=> ! [B] :
( v3_ordinal1(B)
=> k1_card_1(k14_ordinal2(A,B)) = k1_card_2(k1_card_1(A),k1_card_1(B)) ) ) ).
fof(t25_card_2,axiom,
! [A] :
( v3_ordinal1(A)
=> ! [B] :
( v3_ordinal1(B)
=> k1_card_1(k15_ordinal2(A,B)) = k2_card_2(k1_card_1(A),k1_card_1(B)) ) ) ).
fof(t26_card_2,axiom,
! [A,B] :
( r2_wellord2(k2_xboole_0(k2_zfmisc_1(A,k1_tarski(np__0)),k2_zfmisc_1(B,k1_tarski(np__1))),k2_xboole_0(k2_zfmisc_1(B,k1_tarski(np__0)),k2_zfmisc_1(A,k1_tarski(np__1))))
& k1_card_1(k2_xboole_0(k2_zfmisc_1(A,k1_tarski(np__0)),k2_zfmisc_1(B,k1_tarski(np__1)))) = k1_card_1(k2_xboole_0(k2_zfmisc_1(B,k1_tarski(np__0)),k2_zfmisc_1(A,k1_tarski(np__1)))) ) ).
fof(t27_card_2,axiom,
! [A,B,C,D] :
( r2_wellord2(k2_xboole_0(k2_zfmisc_1(A,B),k2_zfmisc_1(C,D)),k2_xboole_0(k2_zfmisc_1(B,A),k2_zfmisc_1(D,C)))
& k1_card_1(k2_xboole_0(k2_zfmisc_1(A,B),k2_zfmisc_1(C,D))) = k1_card_1(k2_xboole_0(k2_zfmisc_1(B,A),k2_zfmisc_1(D,C))) ) ).
fof(t28_card_2,axiom,
! [A,B,C,D] :
( A != B
=> k1_card_2(k1_card_1(C),k1_card_1(D)) = k1_card_1(k2_xboole_0(k2_zfmisc_1(C,k1_tarski(A)),k2_zfmisc_1(D,k1_tarski(B)))) ) ).
fof(t29_card_2,axiom,
! [A] :
( v1_card_1(A)
=> k1_card_2(A,np__0) = A ) ).
fof(t30_card_2,axiom,
$true ).
fof(t31_card_2,axiom,
! [A] :
( v1_card_1(A)
=> ! [B] :
( v1_card_1(B)
=> ! [C] :
( v1_card_1(C)
=> k1_card_2(k1_card_2(A,B),C) = k1_card_2(A,k1_card_2(B,C)) ) ) ) ).
fof(t32_card_2,axiom,
! [A] :
( v1_card_1(A)
=> k2_card_2(A,np__0) = np__0 ) ).
fof(t33_card_2,axiom,
! [A] :
( v1_card_1(A)
=> k2_card_2(A,np__1) = A ) ).
fof(t34_card_2,axiom,
$true ).
fof(t35_card_2,axiom,
! [A] :
( v1_card_1(A)
=> ! [B] :
( v1_card_1(B)
=> ! [C] :
( v1_card_1(C)
=> k2_card_2(k2_card_2(A,B),C) = k2_card_2(A,k2_card_2(B,C)) ) ) ) ).
fof(t36_card_2,axiom,
! [A] :
( v1_card_1(A)
=> k2_card_2(np__2,A) = k1_card_2(A,A) ) ).
fof(t37_card_2,axiom,
! [A] :
( v1_card_1(A)
=> ! [B] :
( v1_card_1(B)
=> ! [C] :
( v1_card_1(C)
=> k2_card_2(A,k1_card_2(B,C)) = k1_card_2(k2_card_2(A,B),k2_card_2(A,C)) ) ) ) ).
fof(t38_card_2,axiom,
! [A] :
( v1_card_1(A)
=> k3_card_2(A,np__0) = np__1 ) ).
fof(t39_card_2,axiom,
! [A] :
( v1_card_1(A)
=> ( A != np__0
=> k3_card_2(np__0,A) = np__0 ) ) ).
fof(t40_card_2,axiom,
! [A] :
( v1_card_1(A)
=> ( k3_card_2(A,np__1) = A
& k3_card_2(np__1,A) = np__1 ) ) ).
fof(t41_card_2,axiom,
! [A] :
( v1_card_1(A)
=> ! [B] :
( v1_card_1(B)
=> ! [C] :
( v1_card_1(C)
=> k3_card_2(A,k1_card_2(B,C)) = k2_card_2(k3_card_2(A,B),k3_card_2(A,C)) ) ) ) ).
fof(t42_card_2,axiom,
! [A] :
( v1_card_1(A)
=> ! [B] :
( v1_card_1(B)
=> ! [C] :
( v1_card_1(C)
=> k3_card_2(k2_card_2(A,B),C) = k2_card_2(k3_card_2(A,C),k3_card_2(B,C)) ) ) ) ).
fof(t43_card_2,axiom,
! [A] :
( v1_card_1(A)
=> ! [B] :
( v1_card_1(B)
=> ! [C] :
( v1_card_1(C)
=> k3_card_2(A,k2_card_2(B,C)) = k3_card_2(k3_card_2(A,B),C) ) ) ) ).
fof(t44_card_2,axiom,
! [A] : k3_card_2(np__2,k1_card_1(A)) = k1_card_1(k1_zfmisc_1(A)) ).
fof(t45_card_2,axiom,
! [A] :
( v1_card_1(A)
=> k3_card_2(A,np__2) = k2_card_2(A,A) ) ).
fof(t46_card_2,axiom,
! [A] :
( v1_card_1(A)
=> ! [B] :
( v1_card_1(B)
=> k3_card_2(k1_card_2(A,B),np__2) = k1_card_2(k1_card_2(k2_card_2(A,A),k2_card_2(k2_card_2(np__2,A),B)),k2_card_2(B,B)) ) ) ).
fof(t47_card_2,axiom,
! [A,B] : r1_tarski(k1_card_1(k2_xboole_0(A,B)),k1_card_2(k1_card_1(A),k1_card_1(B))) ).
fof(t48_card_2,axiom,
! [A,B] :
( r1_xboole_0(A,B)
=> k1_card_1(k2_xboole_0(A,B)) = k1_card_2(k1_card_1(A),k1_card_1(B)) ) ).
fof(t49_card_2,axiom,
! [A] :
( m2_subset_1(A,k1_numbers,k5_numbers)
=> ! [B] :
( m2_subset_1(B,k1_numbers,k5_numbers)
=> k1_nat_1(A,B) = k14_ordinal2(A,B) ) ) ).
fof(t50_card_2,axiom,
! [A] :
( m2_subset_1(A,k1_numbers,k5_numbers)
=> ! [B] :
( m2_subset_1(B,k1_numbers,k5_numbers)
=> k2_nat_1(A,B) = k15_ordinal2(A,B) ) ) ).
fof(t51_card_2,axiom,
! [A] :
( m2_subset_1(A,k1_numbers,k5_numbers)
=> ! [B] :
( m2_subset_1(B,k1_numbers,k5_numbers)
=> k1_card_1(k1_nat_1(A,B)) = k1_card_2(k1_card_1(A),k1_card_1(B)) ) ) ).
fof(t52_card_2,axiom,
! [A] :
( m2_subset_1(A,k1_numbers,k5_numbers)
=> ! [B] :
( m2_subset_1(B,k1_numbers,k5_numbers)
=> k1_card_1(k2_nat_1(A,B)) = k2_card_2(k1_card_1(A),k1_card_1(B)) ) ) ).
fof(t53_card_2,axiom,
! [A] :
( v1_finset_1(A)
=> ! [B] :
( v1_finset_1(B)
=> ( r1_xboole_0(A,B)
=> k4_card_1(k2_xboole_0(A,B)) = k1_nat_1(k4_card_1(A),k4_card_1(B)) ) ) ) ).
fof(t54_card_2,axiom,
! [A,B] :
( v1_finset_1(B)
=> ( ~ r2_hidden(A,B)
=> k4_card_1(k2_xboole_0(B,k1_tarski(A))) = k1_nat_1(k4_card_1(B),np__1) ) ) ).
fof(t55_card_2,axiom,
$true ).
fof(t56_card_2,axiom,
$true ).
fof(t57_card_2,axiom,
! [A] :
( v1_finset_1(A)
=> ! [B] :
( v1_finset_1(B)
=> ( r1_tarski(k1_card_1(A),k1_card_1(B))
<=> r1_xreal_0(k4_card_1(A),k4_card_1(B)) ) ) ) ).
fof(t58_card_2,axiom,
! [A] :
( v1_finset_1(A)
=> ! [B] :
( v1_finset_1(B)
=> ( r2_hidden(k1_card_1(A),k1_card_1(B))
<=> ~ r1_xreal_0(k4_card_1(B),k4_card_1(A)) ) ) ) ).
fof(t59_card_2,axiom,
! [A] :
( k1_card_1(A) = np__0
=> A = k1_xboole_0 ) ).
fof(t60_card_2,axiom,
! [A] :
( k1_card_1(A) = np__1
<=> ? [B] : A = k1_tarski(B) ) ).
fof(t61_card_2,axiom,
! [A] :
( v1_finset_1(A)
=> ( r2_wellord2(A,k4_card_1(A))
& r2_wellord2(A,k1_card_1(k4_card_1(A)))
& r2_wellord2(A,k2_finseq_1(k4_card_1(A))) ) ) ).
fof(t62_card_2,axiom,
! [A] :
( v1_finset_1(A)
=> ! [B] :
( v1_finset_1(B)
=> r1_xreal_0(k4_card_1(k2_xboole_0(A,B)),k1_nat_1(k4_card_1(A),k4_card_1(B))) ) ) ).
fof(t63_card_2,axiom,
! [A] :
( v1_finset_1(A)
=> ! [B] :
( v1_finset_1(B)
=> ( r1_tarski(B,A)
=> k4_card_1(k4_xboole_0(A,B)) = k5_real_1(k4_card_1(A),k4_card_1(B)) ) ) ) ).
fof(t64_card_2,axiom,
! [A] :
( v1_finset_1(A)
=> ! [B] :
( v1_finset_1(B)
=> k4_card_1(k2_xboole_0(A,B)) = k5_real_1(k1_nat_1(k4_card_1(A),k4_card_1(B)),k4_card_1(k3_xboole_0(A,B))) ) ) ).
fof(t65_card_2,axiom,
! [A] :
( v1_finset_1(A)
=> ! [B] :
( v1_finset_1(B)
=> k4_card_1(k2_zfmisc_1(A,B)) = k2_nat_1(k4_card_1(A),k4_card_1(B)) ) ) ).
fof(t66_card_2,axiom,
$true ).
fof(t67_card_2,axiom,
! [A] :
( v1_finset_1(A)
=> ! [B] :
( v1_finset_1(B)
=> ( r2_xboole_0(A,B)
=> ( ~ r1_xreal_0(k4_card_1(B),k4_card_1(A))
& r2_hidden(k1_card_1(A),k1_card_1(B)) ) ) ) ) ).
fof(t68_card_2,axiom,
! [A,B] :
( v1_finset_1(B)
=> ( ( ~ r1_tarski(k1_card_1(A),k1_card_1(B))
& ~ r2_hidden(k1_card_1(A),k1_card_1(B)) )
| v1_finset_1(A) ) ) ).
fof(t69_card_2,axiom,
! [A,B] : r1_xreal_0(k4_card_1(k2_tarski(A,B)),np__2) ).
fof(t70_card_2,axiom,
! [A,B,C] : r1_xreal_0(k4_card_1(k1_enumset1(A,B,C)),np__3) ).
fof(t71_card_2,axiom,
! [A,B,C,D] : r1_xreal_0(k4_card_1(k2_enumset1(A,B,C,D)),np__4) ).
fof(t72_card_2,axiom,
! [A,B,C,D,E] : r1_xreal_0(k4_card_1(k3_enumset1(A,B,C,D,E)),np__5) ).
fof(t73_card_2,axiom,
! [A,B,C,D,E,F] : r1_xreal_0(k4_card_1(k4_enumset1(A,B,C,D,E,F)),np__6) ).
fof(t74_card_2,axiom,
! [A,B,C,D,E,F,G] : r1_xreal_0(k4_card_1(k5_enumset1(A,B,C,D,E,F,G)),np__7) ).
fof(t75_card_2,axiom,
! [A,B,C,D,E,F,G,H] : r1_xreal_0(k4_card_1(k6_enumset1(A,B,C,D,E,F,G,H)),np__8) ).
fof(t76_card_2,axiom,
! [A,B] :
( A != B
=> k4_card_1(k2_tarski(A,B)) = np__2 ) ).
fof(t77_card_2,axiom,
! [A,B,C] :
~ ( A != B
& A != C
& B != C
& k4_card_1(k1_enumset1(A,B,C)) != np__3 ) ).
fof(t78_card_2,axiom,
! [A,B,C,D] :
~ ( A != B
& A != C
& A != D
& B != C
& B != D
& C != D
& k4_card_1(k2_enumset1(A,B,C,D)) != np__4 ) ).
fof(t79_card_2,axiom,
! [A] :
( v1_finset_1(A)
=> ~ ( k4_card_1(A) = np__2
& ! [B,C] :
~ ( B != C
& A = k2_tarski(B,C) ) ) ) ).
fof(t80_card_2,axiom,
! [A] :
( ( v1_relat_1(A)
& v1_funct_1(A) )
=> r1_ordinal1(k1_card_1(k2_relat_1(A)),k1_card_1(k1_relat_1(A))) ) ).
fof(t81_card_2,axiom,
! [A] :
( ( v1_finset_1(A)
& ! [B,C] :
~ ( r2_hidden(B,A)
& r2_hidden(C,A)
& ~ r1_tarski(B,C)
& ~ r1_tarski(C,B) ) )
=> ( A = k1_xboole_0
| r2_hidden(k3_tarski(A),A) ) ) ).
fof(dt_k1_card_2,axiom,
! [A,B] :
( ( v1_card_1(A)
& v1_card_1(B) )
=> v1_card_1(k1_card_2(A,B)) ) ).
fof(commutativity_k1_card_2,axiom,
! [A,B] :
( ( v1_card_1(A)
& v1_card_1(B) )
=> k1_card_2(A,B) = k1_card_2(B,A) ) ).
fof(dt_k2_card_2,axiom,
! [A,B] :
( ( v1_card_1(A)
& v1_card_1(B) )
=> v1_card_1(k2_card_2(A,B)) ) ).
fof(commutativity_k2_card_2,axiom,
! [A,B] :
( ( v1_card_1(A)
& v1_card_1(B) )
=> k2_card_2(A,B) = k2_card_2(B,A) ) ).
fof(dt_k3_card_2,axiom,
! [A,B] :
( ( v1_card_1(A)
& v1_card_1(B) )
=> v1_card_1(k3_card_2(A,B)) ) ).
%------------------------------------------------------------------------------