SET007 Axioms: SET007+614.ax
%------------------------------------------------------------------------------
% File : SET007+614 : TPTP v9.0.0. Released v3.4.0.
% Domain : Set Theory
% Axioms : Components and Basis of Topological Spaces
% Version : [Urb08] axioms.
% English :
% Refs : [Mat90] Matuszewski (1990), Formalized Mathematics
% : [Urb07] Urban (2007), MPTP 0.2: Design, Implementation, and In
% : [Urb08] Urban (2006), Email to G. Sutcliffe
% Source : [Urb08]
% Names : yellow15 [Urb08]
% Status : Satisfiable
% Syntax : Number of formulae : 48 ( 1 unt; 0 def)
% Number of atoms : 251 ( 54 equ)
% Maximal formula atoms : 16 ( 5 avg)
% Number of connectives : 225 ( 22 ~; 1 |; 82 &)
% ( 5 <=>; 115 =>; 0 <=; 0 <~>)
% Maximal formula depth : 16 ( 7 avg)
% Maximal term depth : 5 ( 1 avg)
% Number of predicates : 42 ( 40 usr; 1 prp; 0-3 aty)
% Number of functors : 43 ( 43 usr; 12 con; 0-4 aty)
% Number of variables : 121 ( 116 !; 5 ?)
% SPC :
% Comments : The individual reference can be found in [Mat90] by looking for
% the name provided by [Urb08].
% : Translated by MPTP from the Mizar Mathematical Library 4.48.930.
% : These set theory axioms are used in encodings of problems in
% various domains, including ALG, CAT, GRP, LAT, SET, and TOP.
%------------------------------------------------------------------------------
fof(fc1_yellow15,axiom,
( ~ v1_xboole_0(k6_margrel1)
& v1_finset_1(k6_margrel1) ) ).
fof(cc1_yellow15,axiom,
! [A] :
( v1_finset_1(A)
=> ! [B] :
( m1_subset_1(B,k1_zfmisc_1(k1_zfmisc_1(A)))
=> v1_finset_1(B) ) ) ).
fof(cc2_yellow15,axiom,
! [A] :
( ( v6_group_1(A)
& l1_struct_0(A) )
=> ! [B] :
( m1_subset_1(B,k1_zfmisc_1(k1_zfmisc_1(u1_struct_0(A))))
=> v1_finset_1(B) ) ) ).
fof(cc3_yellow15,axiom,
! [A] :
( m1_finseq_1(A,k6_margrel1)
=> v1_valuat_1(A) ) ).
fof(fc2_yellow15,axiom,
! [A,B] :
( ( v1_finset_1(B)
& m1_subset_1(B,k1_zfmisc_1(k1_zfmisc_1(A))) )
=> v1_finset_1(k3_yellow15(A,B)) ) ).
fof(fc3_yellow15,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& l1_orders_2(A) )
=> ( ~ v1_xboole_0(k2_pre_topc(A))
& v12_waybel_0(k2_pre_topc(A),A)
& v13_waybel_0(k2_pre_topc(A),A)
& v1_waybel23(k2_pre_topc(A),A)
& v2_waybel23(k2_pre_topc(A),A)
& v3_waybel23(k2_pre_topc(A),A)
& v4_waybel23(k2_pre_topc(A),A)
& v6_waybel23(k2_pre_topc(A),A)
& v7_waybel23(k2_pre_topc(A),A) ) ) ).
fof(t1_yellow15,axiom,
$true ).
fof(t2_yellow15,axiom,
! [A] :
( m2_subset_1(A,k1_numbers,k5_numbers)
=> ! [B] :
( v1_finset_1(B)
=> v1_finset_1(k4_finseq_2(A,B)) ) ) ).
fof(t3_yellow15,axiom,
! [A] :
( v1_finset_1(A)
=> ! [B] :
( m1_subset_1(B,k1_zfmisc_1(k1_zfmisc_1(A)))
=> v1_finset_1(B) ) ) ).
fof(t4_yellow15,axiom,
! [A] :
( ~ v1_realset1(A)
=> ! [B] :
( m1_subset_1(B,A)
=> ? [C] :
( r2_hidden(C,A)
& B != C ) ) ) ).
fof(d1_yellow15,axiom,
! [A,B] :
( m2_finseq_1(B,k1_zfmisc_1(A))
=> ! [C] :
( m2_finseq_1(C,k6_margrel1)
=> ! [D] :
( m2_finseq_1(D,k1_zfmisc_1(A))
=> ( D = k2_yellow15(A,B,C)
<=> ( k3_finseq_1(D) = k3_finseq_1(B)
& ! [E] :
( m2_subset_1(E,k1_numbers,k5_numbers)
=> ( r2_hidden(E,k4_finseq_1(B))
=> k1_funct_1(D,E) = k1_cqc_lang(k1_funct_1(C,E),k8_margrel1,k1_funct_1(B,E),k4_xboole_0(A,k1_funct_1(B,E))) ) ) ) ) ) ) ) ).
fof(t5_yellow15,axiom,
! [A,B] :
( m2_finseq_1(B,k1_zfmisc_1(A))
=> ! [C] :
( m2_finseq_1(C,k6_margrel1)
=> k4_finseq_1(k2_yellow15(A,B,C)) = k4_finseq_1(B) ) ) ).
fof(t6_yellow15,axiom,
! [A,B] :
( m2_finseq_1(B,k1_zfmisc_1(A))
=> ! [C] :
( m2_finseq_1(C,k6_margrel1)
=> ! [D] :
( m2_subset_1(D,k1_numbers,k5_numbers)
=> ( k1_funct_1(C,D) = k8_margrel1
=> k1_funct_1(k2_yellow15(A,B,C),D) = k1_funct_1(B,D) ) ) ) ) ).
fof(t7_yellow15,axiom,
! [A,B] :
( m2_finseq_1(B,k1_zfmisc_1(A))
=> ! [C] :
( m2_finseq_1(C,k6_margrel1)
=> ! [D] :
( m2_subset_1(D,k1_numbers,k5_numbers)
=> ( ( r2_hidden(D,k4_finseq_1(B))
& k1_funct_1(C,D) = k7_margrel1 )
=> k1_funct_1(k2_yellow15(A,B,C),D) = k4_xboole_0(A,k1_funct_1(B,D)) ) ) ) ) ).
fof(t8_yellow15,axiom,
! [A,B] :
( m2_finseq_1(B,k6_margrel1)
=> k3_finseq_1(k2_yellow15(A,k6_finseq_1(k1_zfmisc_1(A)),B)) = np__0 ) ).
fof(t9_yellow15,axiom,
! [A,B] :
( m2_finseq_1(B,k6_margrel1)
=> k2_yellow15(A,k6_finseq_1(k1_zfmisc_1(A)),B) = k6_finseq_1(k1_zfmisc_1(A)) ) ).
fof(t10_yellow15,axiom,
! [A,B] :
( m1_subset_1(B,k1_zfmisc_1(A))
=> ! [C] :
( m2_finseq_1(C,k6_margrel1)
=> k3_finseq_1(k2_yellow15(A,k12_finseq_1(k1_zfmisc_1(A),B),C)) = np__1 ) ) ).
fof(t11_yellow15,axiom,
! [A,B] :
( m1_subset_1(B,k1_zfmisc_1(A))
=> ! [C] :
( m2_finseq_1(C,k6_margrel1)
=> ( ( k1_funct_1(C,np__1) = k8_margrel1
=> k1_funct_1(k2_yellow15(A,k12_finseq_1(k1_zfmisc_1(A),B),C),np__1) = B )
& ( k1_funct_1(C,np__1) = k7_margrel1
=> k1_funct_1(k2_yellow15(A,k12_finseq_1(k1_zfmisc_1(A),B),C),np__1) = k4_xboole_0(A,B) ) ) ) ) ).
fof(t12_yellow15,axiom,
! [A,B] :
( m1_subset_1(B,k1_zfmisc_1(A))
=> ! [C] :
( m1_subset_1(C,k1_zfmisc_1(A))
=> ! [D] :
( m2_finseq_1(D,k6_margrel1)
=> k3_finseq_1(k2_yellow15(A,k2_finseq_4(k1_zfmisc_1(A),B,C),D)) = np__2 ) ) ) ).
fof(t13_yellow15,axiom,
! [A,B] :
( m1_subset_1(B,k1_zfmisc_1(A))
=> ! [C] :
( m1_subset_1(C,k1_zfmisc_1(A))
=> ! [D] :
( m2_finseq_1(D,k6_margrel1)
=> ( ( k1_funct_1(D,np__1) = k8_margrel1
=> k1_funct_1(k2_yellow15(A,k2_finseq_4(k1_zfmisc_1(A),B,C),D),np__1) = B )
& ( k1_funct_1(D,np__1) = k7_margrel1
=> k1_funct_1(k2_yellow15(A,k2_finseq_4(k1_zfmisc_1(A),B,C),D),np__1) = k4_xboole_0(A,B) )
& ( k1_funct_1(D,np__2) = k8_margrel1
=> k1_funct_1(k2_yellow15(A,k2_finseq_4(k1_zfmisc_1(A),B,C),D),np__2) = C )
& ( k1_funct_1(D,np__2) = k7_margrel1
=> k1_funct_1(k2_yellow15(A,k2_finseq_4(k1_zfmisc_1(A),B,C),D),np__2) = k4_xboole_0(A,C) ) ) ) ) ) ).
fof(t14_yellow15,axiom,
! [A,B] :
( m1_subset_1(B,k1_zfmisc_1(A))
=> ! [C] :
( m1_subset_1(C,k1_zfmisc_1(A))
=> ! [D] :
( m1_subset_1(D,k1_zfmisc_1(A))
=> ! [E] :
( m2_finseq_1(E,k6_margrel1)
=> k3_finseq_1(k2_yellow15(A,k3_finseq_4(k1_zfmisc_1(A),B,C,D),E)) = np__3 ) ) ) ) ).
fof(t15_yellow15,axiom,
! [A,B] :
( m1_subset_1(B,k1_zfmisc_1(A))
=> ! [C] :
( m1_subset_1(C,k1_zfmisc_1(A))
=> ! [D] :
( m1_subset_1(D,k1_zfmisc_1(A))
=> ! [E] :
( m2_finseq_1(E,k6_margrel1)
=> ( ( k1_funct_1(E,np__1) = k8_margrel1
=> k1_funct_1(k2_yellow15(A,k3_finseq_4(k1_zfmisc_1(A),B,C,D),E),np__1) = B )
& ( k1_funct_1(E,np__1) = k7_margrel1
=> k1_funct_1(k2_yellow15(A,k3_finseq_4(k1_zfmisc_1(A),B,C,D),E),np__1) = k4_xboole_0(A,B) )
& ( k1_funct_1(E,np__2) = k8_margrel1
=> k1_funct_1(k2_yellow15(A,k3_finseq_4(k1_zfmisc_1(A),B,C,D),E),np__2) = C )
& ( k1_funct_1(E,np__2) = k7_margrel1
=> k1_funct_1(k2_yellow15(A,k3_finseq_4(k1_zfmisc_1(A),B,C,D),E),np__2) = k4_xboole_0(A,C) )
& ( k1_funct_1(E,np__3) = k8_margrel1
=> k1_funct_1(k2_yellow15(A,k3_finseq_4(k1_zfmisc_1(A),B,C,D),E),np__3) = D )
& ( k1_funct_1(E,np__3) = k7_margrel1
=> k1_funct_1(k2_yellow15(A,k3_finseq_4(k1_zfmisc_1(A),B,C,D),E),np__3) = k4_xboole_0(A,D) ) ) ) ) ) ) ).
fof(t17_yellow15,axiom,
! [A,B] :
( ( v1_xboole_0(B)
& m1_subset_1(B,k1_zfmisc_1(k1_zfmisc_1(A))) )
=> k3_yellow15(A,B) = k1_tarski(A) ) ).
fof(t18_yellow15,axiom,
! [A,B] :
( ( v1_finset_1(B)
& m1_subset_1(B,k1_zfmisc_1(k1_zfmisc_1(A))) )
=> ! [C] :
( ( v1_finset_1(C)
& m1_subset_1(C,k1_zfmisc_1(k1_zfmisc_1(A))) )
=> ( r1_tarski(C,B)
=> r1_setfam_1(k3_yellow15(A,B),k3_yellow15(A,C)) ) ) ) ).
fof(t19_yellow15,axiom,
! [A,B] :
( ( v1_finset_1(B)
& m1_subset_1(B,k1_zfmisc_1(k1_zfmisc_1(A))) )
=> k5_setfam_1(A,k3_yellow15(A,B)) = A ) ).
fof(t20_yellow15,axiom,
! [A,B] :
( ( v1_finset_1(B)
& m1_subset_1(B,k1_zfmisc_1(k1_zfmisc_1(A))) )
=> ! [C,D] :
( ( r2_hidden(C,k3_yellow15(A,B))
& r2_hidden(D,k3_yellow15(A,B)) )
=> ( C = D
| r1_xboole_0(C,D) ) ) ) ).
fof(d3_yellow15,axiom,
! [A,B] :
( ( v1_finset_1(B)
& m1_subset_1(B,k1_zfmisc_1(k1_zfmisc_1(A))) )
=> ( v1_yellow15(B,A)
<=> ~ r2_hidden(k1_xboole_0,k3_yellow15(A,B)) ) ) ).
fof(t21_yellow15,axiom,
! [A,B] :
( ( v1_finset_1(B)
& m1_subset_1(B,k1_zfmisc_1(k1_zfmisc_1(A))) )
=> ! [C] :
( ( v1_finset_1(C)
& m1_subset_1(C,k1_zfmisc_1(k1_zfmisc_1(A))) )
=> ( ( v1_yellow15(C,A)
& r1_tarski(B,C) )
=> v1_yellow15(B,A) ) ) ) ).
fof(t22_yellow15,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ! [B] :
( ( v1_xboole_0(B)
& m1_subset_1(B,k1_zfmisc_1(k1_zfmisc_1(A))) )
=> v1_yellow15(B,A) ) ) ).
fof(t23_yellow15,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ! [B] :
( ( v1_finset_1(B)
& m1_subset_1(B,k1_zfmisc_1(k1_zfmisc_1(A))) )
=> ( v1_yellow15(B,A)
=> m1_eqrel_1(k3_yellow15(A,B),A) ) ) ) ).
fof(t24_yellow15,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& l1_orders_2(A) )
=> ( v3_waybel23(k2_pre_topc(A),A)
& v4_waybel23(k2_pre_topc(A),A) ) ) ).
fof(t25_yellow15,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& l1_orders_2(A) )
=> ( v6_waybel23(k2_pre_topc(A),A)
& v7_waybel23(k2_pre_topc(A),A) ) ) ).
fof(t26_yellow15,axiom,
! [A] :
( ( v2_orders_2(A)
& v3_orders_2(A)
& v4_orders_2(A)
& v1_lattice3(A)
& v3_waybel_3(A)
& l1_orders_2(A) )
=> m1_waybel23(k2_pre_topc(A),A) ) ).
fof(t27_yellow15,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& v2_orders_2(A)
& v3_orders_2(A)
& v4_orders_2(A)
& v24_waybel_0(A)
& l1_orders_2(A) )
=> ( v6_group_1(A)
=> u1_struct_0(A) = u1_struct_0(k1_waybel_8(A)) ) ) ).
fof(t28_yellow15,axiom,
! [A] :
( ( v2_orders_2(A)
& v3_orders_2(A)
& v4_orders_2(A)
& v1_yellow_0(A)
& v1_lattice3(A)
& l1_orders_2(A) )
=> ! [B] :
( m1_subset_1(B,k1_zfmisc_1(u1_struct_0(A)))
=> ( ~ v1_finset_1(B)
=> k1_card_1(B) = k1_card_1(k12_waybel_0(A,B)) ) ) ) ).
fof(t29_yellow15,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& v2_pre_topc(A)
& v2_t_0topsp(A)
& l1_pre_topc(A) )
=> r1_tarski(k1_card_1(u1_struct_0(A)),k1_card_1(u1_pre_topc(A))) ) ).
fof(t30_yellow15,axiom,
! [A] :
( l1_pre_topc(A)
=> ! [B] :
( m1_subset_1(B,k1_zfmisc_1(u1_struct_0(A)))
=> ( v3_pre_topc(B,A)
=> ! [C] :
( ( v1_finset_1(C)
& m1_subset_1(C,k1_zfmisc_1(k1_zfmisc_1(u1_struct_0(A)))) )
=> ( m1_cantor_1(C,A)
=> ! [D] :
~ ( r2_hidden(D,k3_yellow15(u1_struct_0(A),C))
& ~ r1_xboole_0(B,D)
& ~ r1_tarski(D,B) ) ) ) ) ) ) ).
fof(t31_yellow15,axiom,
! [A] :
( ( v2_pre_topc(A)
& v2_t_0topsp(A)
& l1_pre_topc(A) )
=> ( ~ v6_group_1(A)
=> ! [B] :
( m1_cantor_1(B,A)
=> ~ v1_finset_1(B) ) ) ) ).
fof(s1_yellow15,axiom,
( ! [A] :
( m2_subset_1(A,k1_numbers,k5_numbers)
=> ( r2_hidden(A,k2_finseq_1(f1_s1_yellow15))
=> ( ( p1_s1_yellow15(A)
=> r2_hidden(f3_s1_yellow15(A),f2_s1_yellow15) )
& ( ~ p1_s1_yellow15(A)
=> r2_hidden(f4_s1_yellow15(A),f2_s1_yellow15) ) ) ) )
=> ? [A] :
( m2_finseq_1(A,f2_s1_yellow15)
& k3_finseq_1(A) = f1_s1_yellow15
& ! [B] :
( m2_subset_1(B,k1_numbers,k5_numbers)
=> ( r2_hidden(B,k2_finseq_1(f1_s1_yellow15))
=> ( ( p1_s1_yellow15(B)
=> k1_funct_1(A,B) = f3_s1_yellow15(B) )
& ( ~ p1_s1_yellow15(B)
=> k1_funct_1(A,B) = f4_s1_yellow15(B) ) ) ) ) ) ) ).
fof(dt_k1_yellow15,axiom,
! [A,B] :
( m1_finseq_1(B,k1_zfmisc_1(A))
=> m1_subset_1(k1_yellow15(A,B),k1_zfmisc_1(k1_zfmisc_1(A))) ) ).
fof(redefinition_k1_yellow15,axiom,
! [A,B] :
( m1_finseq_1(B,k1_zfmisc_1(A))
=> k1_yellow15(A,B) = k2_relat_1(B) ) ).
fof(dt_k2_yellow15,axiom,
! [A,B,C] :
( ( m1_finseq_1(B,k1_zfmisc_1(A))
& m1_finseq_1(C,k6_margrel1) )
=> m2_finseq_1(k2_yellow15(A,B,C),k1_zfmisc_1(A)) ) ).
fof(dt_k3_yellow15,axiom,
! [A,B] :
( ( v1_finset_1(B)
& m1_subset_1(B,k1_zfmisc_1(k1_zfmisc_1(A))) )
=> m1_subset_1(k3_yellow15(A,B),k1_zfmisc_1(k1_zfmisc_1(A))) ) ).
fof(t16_yellow15,axiom,
! [A,B] :
( m2_finseq_1(B,k1_zfmisc_1(A))
=> m1_subset_1(a_2_0_yellow15(A,B),k1_zfmisc_1(k1_zfmisc_1(A))) ) ).
fof(d2_yellow15,axiom,
! [A,B] :
( ( v1_finset_1(B)
& m1_subset_1(B,k1_zfmisc_1(k1_zfmisc_1(A))) )
=> ! [C] :
( m1_subset_1(C,k1_zfmisc_1(k1_zfmisc_1(A)))
=> ( C = k3_yellow15(A,B)
<=> ? [D] :
( m2_finseq_1(D,k1_zfmisc_1(A))
& k3_finseq_1(D) = k4_card_1(B)
& k1_yellow15(A,D) = B
& C = a_2_0_yellow15(A,D) ) ) ) ) ).
fof(t32_yellow15,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& v2_pre_topc(A)
& l1_pre_topc(A) )
=> ( v6_group_1(A)
=> ! [B] :
( m1_cantor_1(B,A)
=> ! [C] :
( m1_subset_1(C,u1_struct_0(A))
=> r2_hidden(k1_setfam_1(a_2_1_yellow15(A,C)),B) ) ) ) ) ).
fof(fraenkel_a_2_0_yellow15,axiom,
! [A,B,C] :
( m2_finseq_1(C,k1_zfmisc_1(B))
=> ( r2_hidden(A,a_2_0_yellow15(B,C))
<=> ? [D] :
( m2_finseq_1(D,k6_margrel1)
& A = k8_setfam_1(B,k1_yellow15(B,k2_yellow15(B,C,D)))
& k3_finseq_1(D) = k3_finseq_1(C) ) ) ) ).
fof(fraenkel_a_2_1_yellow15,axiom,
! [A,B,C] :
( ( ~ v3_struct_0(B)
& v2_pre_topc(B)
& l1_pre_topc(B)
& m1_subset_1(C,u1_struct_0(B)) )
=> ( r2_hidden(A,a_2_1_yellow15(B,C))
<=> ? [D] :
( m2_subset_1(D,k1_zfmisc_1(u1_struct_0(B)),u1_pre_topc(B))
& A = D
& r2_hidden(C,D) ) ) ) ).
%------------------------------------------------------------------------------