SET007 Axioms: SET007+517.ax
%------------------------------------------------------------------------------
% File : SET007+517 : TPTP v9.0.0. Released v3.4.0.
% Domain : Set Theory
% Axioms : Algebraic Operation on Subsets of Many Sorted Sets
% Version : [Urb08] axioms.
% English :
% Refs : [Mat90] Matuszewski (1990), Formalized Mathematics
% : [Urb07] Urban (2007), MPTP 0.2: Design, Implementation, and In
% : [Urb08] Urban (2006), Email to G. Sutcliffe
% Source : [Urb08]
% Names : closure3 [Urb08]
% Status : Satisfiable
% Syntax : Number of formulae : 48 ( 2 unt; 0 def)
% Number of atoms : 283 ( 26 equ)
% Maximal formula atoms : 12 ( 5 avg)
% Number of connectives : 274 ( 39 ~; 0 |; 118 &)
% ( 12 <=>; 105 =>; 0 <=; 0 <~>)
% Maximal formula depth : 18 ( 9 avg)
% Maximal term depth : 4 ( 1 avg)
% Number of predicates : 44 ( 42 usr; 1 prp; 0-4 aty)
% Number of functors : 32 ( 32 usr; 1 con; 0-4 aty)
% Number of variables : 177 ( 171 !; 6 ?)
% SPC :
% Comments : The individual reference can be found in [Mat90] by looking for
% the name provided by [Urb08].
% : Translated by MPTP from the Mizar Mathematical Library 4.48.930.
% : These set theory axioms are used in encodings of problems in
% various domains, including ALG, CAT, GRP, LAT, SET, and TOP.
%------------------------------------------------------------------------------
fof(fc1_closure3,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& l1_struct_0(A) )
=> ( v1_struct_0(g1_struct_0(u1_struct_0(A)))
& ~ v3_struct_0(g1_struct_0(u1_struct_0(A))) ) ) ).
fof(fc2_closure3,axiom,
! [A,B,C] :
( ( m1_pboole(B,A)
& v1_xboole_0(C)
& m1_subset_1(C,k1_zfmisc_1(k1_closure2(A,B))) )
=> ( v1_relat_1(k2_closure3(A,B,C))
& v3_relat_1(k2_closure3(A,B,C))
& v1_funct_1(k2_closure3(A,B,C))
& v1_pre_circ(k2_closure3(A,B,C),A) ) ) ).
fof(rc1_closure3,axiom,
! [A,B] :
( ( ~ v1_xboole_0(A)
& m1_pboole(B,A) )
=> ? [C] :
( m1_relset_1(C,k6_closure2(A,B),k6_closure2(A,B))
& ~ v1_xboole_0(C)
& v1_relat_1(C)
& v1_funct_1(C)
& v1_funct_2(C,k6_closure2(A,B),k6_closure2(A,B))
& v1_partfun1(C,k6_closure2(A,B),k6_closure2(A,B))
& v7_closure2(C,A,B)
& v8_closure2(C,A,B)
& v9_closure2(C,A,B)
& v1_closure3(C,A,B) ) ) ).
fof(fc3_closure3,axiom,
! [A,B] :
( ( ~ v3_struct_0(A)
& ~ v2_msualg_1(A)
& l1_msualg_1(A)
& v4_msualg_1(B,A)
& v5_msualg_1(B,A)
& l3_msualg_1(B,A) )
=> ( v11_closure2(k5_closure3(A,B),g1_struct_0(u1_struct_0(A)))
& v14_closure2(k5_closure3(A,B),g1_struct_0(u1_struct_0(A)))
& v15_closure2(k5_closure3(A,B),g1_struct_0(u1_struct_0(A)))
& v16_closure2(k5_closure3(A,B),g1_struct_0(u1_struct_0(A))) ) ) ).
fof(fc4_closure3,axiom,
! [A,B] :
( ( ~ v3_struct_0(A)
& ~ v2_msualg_1(A)
& l1_msualg_1(A)
& v4_msualg_1(B,A)
& v5_msualg_1(B,A)
& l3_msualg_1(B,A) )
=> ( v11_closure2(k5_closure3(A,B),g1_struct_0(u1_struct_0(A)))
& v14_closure2(k5_closure3(A,B),g1_struct_0(u1_struct_0(A)))
& v15_closure2(k5_closure3(A,B),g1_struct_0(u1_struct_0(A)))
& v16_closure2(k5_closure3(A,B),g1_struct_0(u1_struct_0(A)))
& v2_closure3(k5_closure3(A,B),g1_struct_0(u1_struct_0(A))) ) ) ).
fof(t1_closure3,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ! [B] :
( m1_pboole(B,A)
=> ! [C] :
( m1_pboole(C,A)
=> k1_funct_4(B,C) = C ) ) ) ).
fof(t2_closure3,axiom,
! [A,B] :
( m1_pboole(B,A)
=> ! [C] :
( m1_pboole(C,A)
=> ! [D] :
( m1_subset_1(D,k1_zfmisc_1(k1_closure2(A,B)))
=> ( r2_hidden(C,D)
=> r2_pboole(A,k6_mssubfam(A,B,k5_closure2(A,B,D)),C) ) ) ) ) ).
fof(t3_closure3,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& ~ v2_msualg_1(A)
& l1_msualg_1(A) )
=> ! [B] :
( ( v4_msualg_1(B,A)
& v5_msualg_1(B,A)
& l3_msualg_1(B,A) )
=> ! [C] :
( m1_subset_1(C,k1_zfmisc_1(k1_closure2(u1_struct_0(A),u4_msualg_1(A,B))))
=> ( r1_tarski(C,k6_msualg_2(A,B))
=> ! [D] :
( m4_pboole(D,u1_struct_0(A),u4_msualg_1(A,B))
=> ( r6_pboole(u1_struct_0(A),D,k6_mssubfam(u1_struct_0(A),u4_msualg_1(A,B),k5_closure2(u1_struct_0(A),u4_msualg_1(A,B),C)))
=> v3_msualg_2(D,A,B) ) ) ) ) ) ) ).
fof(d1_closure3,axiom,
! [A,B] :
( m1_pboole(B,A)
=> ! [C] :
( m1_subset_1(C,k1_zfmisc_1(k1_closure2(A,B)))
=> ! [D] :
( m1_subset_1(D,k1_zfmisc_1(k1_closure2(A,B)))
=> ( r1_closure3(A,B,C,D)
<=> ! [E] :
~ ( r2_hidden(E,D)
& ! [F] :
~ ( r2_hidden(F,C)
& r1_tarski(E,F) ) ) ) ) ) ) ).
fof(d2_closure3,axiom,
! [A,B] :
( m1_pboole(B,A)
=> ! [C] :
( m1_subset_1(C,k1_zfmisc_1(k1_closure2(A,B)))
=> ! [D] :
( m1_subset_1(D,k1_zfmisc_1(k1_closure2(A,B)))
=> ( r2_closure3(A,B,C,D)
<=> ! [E] :
~ ( r2_hidden(E,C)
& ! [F] :
~ ( r2_hidden(F,D)
& r1_tarski(F,E) ) ) ) ) ) ) ).
fof(t4_closure3,axiom,
! [A,B] :
( m1_pboole(B,A)
=> ! [C] :
( m1_subset_1(C,k1_zfmisc_1(k1_closure2(A,B)))
=> ! [D] :
( m1_subset_1(D,k1_zfmisc_1(k1_closure2(A,B)))
=> ! [E] :
( m1_subset_1(E,k1_zfmisc_1(k1_closure2(A,B)))
=> ( ( r1_closure3(A,B,D,C)
& r1_closure3(A,B,E,D) )
=> r1_closure3(A,B,E,C) ) ) ) ) ) ).
fof(t5_closure3,axiom,
! [A,B] :
( m1_pboole(B,A)
=> ! [C] :
( m1_subset_1(C,k1_zfmisc_1(k1_closure2(A,B)))
=> ! [D] :
( m1_subset_1(D,k1_zfmisc_1(k1_closure2(A,B)))
=> ! [E] :
( m1_subset_1(E,k1_zfmisc_1(k1_closure2(A,B)))
=> ( ( r2_closure3(A,B,C,D)
& r2_closure3(A,B,D,E) )
=> r2_closure3(A,B,C,E) ) ) ) ) ) ).
fof(t6_closure3,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ! [B] :
( ( v2_relat_1(B)
& m1_pboole(B,A) )
=> B = k1_funct_4(k1_pboole(A),k7_relat_1(B,k1_closure3(A,B))) ) ) ).
fof(t7_closure3,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ! [B] :
( ( v2_relat_1(B)
& m1_pboole(B,A) )
=> ! [C] :
( ( v2_relat_1(C)
& m1_pboole(C,A) )
=> ( ( k1_closure3(A,B) = k1_closure3(A,C)
& k7_relat_1(B,k1_closure3(A,B)) = k7_relat_1(C,k1_closure3(A,C)) )
=> r6_pboole(A,B,C) ) ) ) ) ).
fof(t8_closure3,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ! [B] :
( m1_pboole(B,A)
=> ! [C] :
( m1_subset_1(C,A)
=> ( ~ r2_hidden(C,k1_closure3(A,B))
=> k1_funct_1(B,C) = k1_xboole_0 ) ) ) ) ).
fof(t9_closure3,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ! [B] :
( m1_pboole(B,A)
=> ! [C] :
( m1_closure2(C,A,B,k6_closure2(A,B))
=> ! [D] :
( m1_subset_1(D,A)
=> ! [E] :
~ ( r2_hidden(E,k1_funct_1(C,D))
& ! [F] :
( m1_closure2(F,A,B,k6_closure2(A,B))
=> ~ ( r2_hidden(E,k1_funct_1(F,D))
& v1_pre_circ(F,A)
& v1_finset_1(k1_closure3(A,F))
& r2_pboole(A,F,C) ) ) ) ) ) ) ) ).
fof(t10_closure3,axiom,
! [A,B] :
( m1_pboole(B,A)
=> ! [C] :
( m1_subset_1(C,k1_zfmisc_1(k1_closure2(A,B)))
=> r6_pboole(A,k2_closure3(A,B,C),k2_mboolean(A,k5_closure2(A,B,C))) ) ) ).
fof(t11_closure3,axiom,
! [A,B] :
( m1_pboole(B,A)
=> ! [C] :
( m1_subset_1(C,k1_zfmisc_1(k1_closure2(A,B)))
=> ! [D] :
( m1_subset_1(D,k1_zfmisc_1(k1_closure2(A,B)))
=> r6_pboole(A,k2_closure3(A,B,k3_closure3(A,B,C,D)),k2_pboole(A,k2_closure3(A,B,C),k2_closure3(A,B,D))) ) ) ) ).
fof(t12_closure3,axiom,
! [A,B] :
( m1_pboole(B,A)
=> ! [C] :
( m1_subset_1(C,k1_zfmisc_1(k1_closure2(A,B)))
=> ! [D] :
( m1_subset_1(D,k1_zfmisc_1(k1_closure2(A,B)))
=> ( r1_tarski(C,D)
=> r2_pboole(A,k2_closure3(A,B,C),k2_closure3(A,B,D)) ) ) ) ) ).
fof(t13_closure3,axiom,
! [A,B] :
( m1_pboole(B,A)
=> ! [C] :
( m1_subset_1(C,k1_zfmisc_1(k1_closure2(A,B)))
=> ! [D] :
( m1_subset_1(D,k1_zfmisc_1(k1_closure2(A,B)))
=> r2_pboole(A,k2_closure3(A,B,k4_closure3(A,B,C,D)),k3_pboole(A,k2_closure3(A,B,C),k2_closure3(A,B,D))) ) ) ) ).
fof(d6_closure3,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& l1_struct_0(A) )
=> ! [B] :
( ( v15_closure2(B,A)
& l1_closure2(B,A) )
=> ( v2_closure3(B,A)
<=> v1_closure3(k12_closure2(A,B),u1_struct_0(A),u4_msualg_1(A,B)) ) ) ) ).
fof(d7_closure3,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& ~ v2_msualg_1(A)
& l1_msualg_1(A) )
=> ! [B] :
( ( v5_msualg_1(B,A)
& l3_msualg_1(B,A) )
=> ! [C] :
( ( v11_closure2(C,g1_struct_0(u1_struct_0(A)))
& l1_closure2(C,g1_struct_0(u1_struct_0(A))) )
=> ( C = k5_closure3(A,B)
<=> ( u4_msualg_1(g1_struct_0(u1_struct_0(A)),C) = u4_msualg_1(A,B)
& u1_closure2(g1_struct_0(u1_struct_0(A)),C) = k6_msualg_2(A,B) ) ) ) ) ) ).
fof(t15_closure3,axiom,
$true ).
fof(t16_closure3,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& ~ v2_msualg_1(A)
& l1_msualg_1(A) )
=> ! [B] :
( ( v4_msualg_1(B,A)
& v5_msualg_1(B,A)
& l3_msualg_1(B,A) )
=> ( v4_closure2(k6_msualg_2(A,B),u1_struct_0(A),u4_msualg_1(A,B))
& m1_subset_1(k6_msualg_2(A,B),k1_zfmisc_1(k1_closure2(u1_struct_0(A),u4_msualg_1(A,B)))) ) ) ) ).
fof(dt_m1_closure3,axiom,
! [A,B,C] :
( ( m1_pboole(B,A)
& ~ v1_xboole_0(C)
& m1_subset_1(C,k1_zfmisc_1(k1_closure2(A,B))) )
=> ! [D] :
( m1_closure3(D,A,B,C)
=> m1_pboole(D,A) ) ) ).
fof(existence_m1_closure3,axiom,
! [A,B,C] :
( ( m1_pboole(B,A)
& ~ v1_xboole_0(C)
& m1_subset_1(C,k1_zfmisc_1(k1_closure2(A,B))) )
=> ? [D] : m1_closure3(D,A,B,C) ) ).
fof(redefinition_m1_closure3,axiom,
! [A,B,C] :
( ( m1_pboole(B,A)
& ~ v1_xboole_0(C)
& m1_subset_1(C,k1_zfmisc_1(k1_closure2(A,B))) )
=> ! [D] :
( m1_closure3(D,A,B,C)
<=> m1_subset_1(D,C) ) ) ).
fof(reflexivity_r1_closure3,axiom,
! [A,B,C,D] :
( ( m1_pboole(B,A)
& m1_subset_1(C,k1_zfmisc_1(k1_closure2(A,B)))
& m1_subset_1(D,k1_zfmisc_1(k1_closure2(A,B))) )
=> r1_closure3(A,B,D,D) ) ).
fof(reflexivity_r2_closure3,axiom,
! [A,B,C,D] :
( ( m1_pboole(B,A)
& m1_subset_1(C,k1_zfmisc_1(k1_closure2(A,B)))
& m1_subset_1(D,k1_zfmisc_1(k1_closure2(A,B))) )
=> r2_closure3(A,B,C,C) ) ).
fof(dt_k1_closure3,axiom,
$true ).
fof(dt_k2_closure3,axiom,
! [A,B,C] :
( ( m1_pboole(B,A)
& m1_subset_1(C,k1_zfmisc_1(k1_closure2(A,B))) )
=> m4_pboole(k2_closure3(A,B,C),A,B) ) ).
fof(dt_k3_closure3,axiom,
! [A,B,C,D] :
( ( m1_pboole(B,A)
& m1_subset_1(C,k1_zfmisc_1(k1_closure2(A,B)))
& m1_subset_1(D,k1_zfmisc_1(k1_closure2(A,B))) )
=> m1_subset_1(k3_closure3(A,B,C,D),k1_zfmisc_1(k1_closure2(A,B))) ) ).
fof(commutativity_k3_closure3,axiom,
! [A,B,C,D] :
( ( m1_pboole(B,A)
& m1_subset_1(C,k1_zfmisc_1(k1_closure2(A,B)))
& m1_subset_1(D,k1_zfmisc_1(k1_closure2(A,B))) )
=> k3_closure3(A,B,C,D) = k3_closure3(A,B,D,C) ) ).
fof(idempotence_k3_closure3,axiom,
! [A,B,C,D] :
( ( m1_pboole(B,A)
& m1_subset_1(C,k1_zfmisc_1(k1_closure2(A,B)))
& m1_subset_1(D,k1_zfmisc_1(k1_closure2(A,B))) )
=> k3_closure3(A,B,C,C) = C ) ).
fof(redefinition_k3_closure3,axiom,
! [A,B,C,D] :
( ( m1_pboole(B,A)
& m1_subset_1(C,k1_zfmisc_1(k1_closure2(A,B)))
& m1_subset_1(D,k1_zfmisc_1(k1_closure2(A,B))) )
=> k3_closure3(A,B,C,D) = k2_xboole_0(C,D) ) ).
fof(dt_k4_closure3,axiom,
! [A,B,C,D] :
( ( m1_pboole(B,A)
& m1_subset_1(C,k1_zfmisc_1(k1_closure2(A,B)))
& m1_subset_1(D,k1_zfmisc_1(k1_closure2(A,B))) )
=> m1_subset_1(k4_closure3(A,B,C,D),k1_zfmisc_1(k1_closure2(A,B))) ) ).
fof(commutativity_k4_closure3,axiom,
! [A,B,C,D] :
( ( m1_pboole(B,A)
& m1_subset_1(C,k1_zfmisc_1(k1_closure2(A,B)))
& m1_subset_1(D,k1_zfmisc_1(k1_closure2(A,B))) )
=> k4_closure3(A,B,C,D) = k4_closure3(A,B,D,C) ) ).
fof(idempotence_k4_closure3,axiom,
! [A,B,C,D] :
( ( m1_pboole(B,A)
& m1_subset_1(C,k1_zfmisc_1(k1_closure2(A,B)))
& m1_subset_1(D,k1_zfmisc_1(k1_closure2(A,B))) )
=> k4_closure3(A,B,C,C) = C ) ).
fof(redefinition_k4_closure3,axiom,
! [A,B,C,D] :
( ( m1_pboole(B,A)
& m1_subset_1(C,k1_zfmisc_1(k1_closure2(A,B)))
& m1_subset_1(D,k1_zfmisc_1(k1_closure2(A,B))) )
=> k4_closure3(A,B,C,D) = k3_xboole_0(C,D) ) ).
fof(dt_k5_closure3,axiom,
! [A,B] :
( ( ~ v3_struct_0(A)
& ~ v2_msualg_1(A)
& l1_msualg_1(A)
& v5_msualg_1(B,A)
& l3_msualg_1(B,A) )
=> ( v11_closure2(k5_closure3(A,B),g1_struct_0(u1_struct_0(A)))
& l1_closure2(k5_closure3(A,B),g1_struct_0(u1_struct_0(A))) ) ) ).
fof(d3_closure3,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ! [B] :
( m1_pboole(B,A)
=> ! [C] :
( C = k1_closure3(A,B)
<=> C = a_2_0_closure3(A,B) ) ) ) ).
fof(d4_closure3,axiom,
! [A,B] :
( m1_pboole(B,A)
=> ! [C] :
( m1_subset_1(C,k1_zfmisc_1(k1_closure2(A,B)))
=> ! [D] :
( m4_pboole(D,A,B)
=> ( D = k2_closure3(A,B,C)
<=> ! [E] :
( r2_hidden(E,A)
=> k1_funct_1(D,E) = k3_tarski(a_4_0_closure3(A,B,C,E)) ) ) ) ) ) ).
fof(t14_closure3,axiom,
! [A,B] :
( m1_pboole(B,A)
=> ! [C] :
( ! [D] :
( r2_hidden(D,C)
=> m1_subset_1(D,k1_zfmisc_1(k1_closure2(A,B))) )
=> ! [D] :
( m1_subset_1(D,k1_zfmisc_1(k1_closure2(A,B)))
=> ! [E] :
( m1_subset_1(E,k1_zfmisc_1(k1_closure2(A,B)))
=> ( ( E = a_3_0_closure3(A,B,C)
& D = k3_tarski(C) )
=> r6_pboole(A,k2_closure3(A,B,E),k2_closure3(A,B,D)) ) ) ) ) ) ).
fof(d5_closure3,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ! [B] :
( m1_pboole(B,A)
=> ! [C] :
( ( v1_funct_1(C)
& v1_funct_2(C,k6_closure2(A,B),k6_closure2(A,B))
& m2_relset_1(C,k6_closure2(A,B),k6_closure2(A,B)) )
=> ( v1_closure3(C,A,B)
<=> ! [D] :
( m1_closure3(D,A,B,k6_closure2(A,B))
=> ~ ( r6_pboole(A,D,k7_closure2(A,B,C,D))
& ! [E] :
( m1_subset_1(E,k1_zfmisc_1(k1_closure2(A,B)))
=> ~ ( E = a_4_1_closure3(A,B,C,D)
& r6_pboole(A,D,k2_closure3(A,B,E)) ) ) ) ) ) ) ) ) ).
fof(fraenkel_a_2_0_closure3,axiom,
! [A,B,C] :
( ( ~ v1_xboole_0(B)
& m1_pboole(C,B) )
=> ( r2_hidden(A,a_2_0_closure3(B,C))
<=> ? [D] :
( m1_subset_1(D,B)
& A = D
& k1_funct_1(C,D) != k1_xboole_0 ) ) ) ).
fof(fraenkel_a_4_0_closure3,axiom,
! [A,B,C,D,E] :
( ( m1_pboole(C,B)
& m1_subset_1(D,k1_zfmisc_1(k1_closure2(B,C))) )
=> ( r2_hidden(A,a_4_0_closure3(B,C,D,E))
<=> ? [F] :
( m1_closure2(F,B,C,k6_closure2(B,C))
& A = k1_funct_1(F,E)
& r2_hidden(F,D) ) ) ) ).
fof(fraenkel_a_3_0_closure3,axiom,
! [A,B,C,D] :
( m1_pboole(C,B)
=> ( r2_hidden(A,a_3_0_closure3(B,C,D))
<=> ? [E] :
( m1_subset_1(E,k1_zfmisc_1(k1_closure2(B,C)))
& A = k2_closure3(B,C,E)
& r2_hidden(E,D) ) ) ) ).
fof(fraenkel_a_4_1_closure3,axiom,
! [A,B,C,D,E] :
( ( ~ v1_xboole_0(B)
& m1_pboole(C,B)
& v1_funct_1(D)
& v1_funct_2(D,k6_closure2(B,C),k6_closure2(B,C))
& m2_relset_1(D,k6_closure2(B,C),k6_closure2(B,C))
& m1_closure3(E,B,C,k6_closure2(B,C)) )
=> ( r2_hidden(A,a_4_1_closure3(B,C,D,E))
<=> ? [F] :
( m1_closure3(F,B,C,k6_closure2(B,C))
& A = k7_closure2(B,C,D,F)
& v1_pre_circ(F,B)
& v1_finset_1(k1_closure3(B,F))
& r2_pboole(B,F,E) ) ) ) ).
%------------------------------------------------------------------------------