SET007 Axioms: SET007+460.ax
%------------------------------------------------------------------------------
% File : SET007+460 : TPTP v9.0.0. Released v3.4.0.
% Domain : Set Theory
% Axioms : Relocability for SCMFSA
% Version : [Urb08] axioms.
% English :
% Refs : [Mat90] Matuszewski (1990), Formalized Mathematics
% : [Urb07] Urban (2007), MPTP 0.2: Design, Implementation, and In
% : [Urb08] Urban (2006), Email to G. Sutcliffe
% Source : [Urb08]
% Names : scmfsa_5 [Urb08]
% Status : Satisfiable
% Syntax : Number of formulae : 21 ( 0 unt; 0 def)
% Number of atoms : 120 ( 18 equ)
% Maximal formula atoms : 15 ( 5 avg)
% Number of connectives : 99 ( 0 ~; 0 |; 23 &)
% ( 5 <=>; 71 =>; 0 <=; 0 <~>)
% Maximal formula depth : 17 ( 8 avg)
% Maximal term depth : 12 ( 2 avg)
% Number of predicates : 14 ( 13 usr; 0 prp; 1-4 aty)
% Number of functors : 45 ( 45 usr; 6 con; 0-4 aty)
% Number of variables : 61 ( 60 !; 1 ?)
% SPC :
% Comments : The individual reference can be found in [Mat90] by looking for
% the name provided by [Urb08].
% : Translated by MPTP from the Mizar Mathematical Library 4.48.930.
% : These set theory axioms are used in encodings of problems in
% various domains, including ALG, CAT, GRP, LAT, SET, and TOP.
%------------------------------------------------------------------------------
fof(d1_scmfsa_5,axiom,
! [A] :
( m1_ami_1(A,k2_tarski(k4_numbers,k3_finseq_2(k4_numbers)),k1_scmfsa_2)
=> ! [B] :
( m2_subset_1(B,k1_numbers,k5_numbers)
=> k1_scmfsa_5(A,B) = k17_ami_1(k2_tarski(k4_numbers,k3_finseq_2(k4_numbers)),k1_scmfsa_2,k17_ami_1(k2_tarski(k4_numbers,k3_finseq_2(k4_numbers)),k1_scmfsa_2,k12_ami_3(k2_tarski(k4_numbers,k3_finseq_2(k4_numbers)),k1_scmfsa_2,k2_scmfsa_4(k13_ami_3(k2_tarski(k4_numbers,k3_finseq_2(k4_numbers)),k1_scmfsa_2,A),B)),k7_scmfsa_4(k8_scmfsa_4(k6_ami_5(k2_tarski(k4_numbers,k3_finseq_2(k4_numbers)),k1_scmfsa_2,A),B),B)),k7_ami_5(k2_tarski(k4_numbers,k3_finseq_2(k4_numbers)),k1_scmfsa_2,A)) ) ) ).
fof(t1_scmfsa_5,axiom,
! [A] :
( m1_ami_1(A,k2_tarski(k4_numbers,k3_finseq_2(k4_numbers)),k1_scmfsa_2)
=> ! [B] :
( m2_subset_1(B,k1_numbers,k5_numbers)
=> k7_ami_5(k2_tarski(k4_numbers,k3_finseq_2(k4_numbers)),k1_scmfsa_2,k1_scmfsa_5(A,B)) = k7_ami_5(k2_tarski(k4_numbers,k3_finseq_2(k4_numbers)),k1_scmfsa_2,A) ) ) ).
fof(t2_scmfsa_5,axiom,
! [A] :
( m1_ami_1(A,k2_tarski(k4_numbers,k3_finseq_2(k4_numbers)),k1_scmfsa_2)
=> ! [B] :
( m2_subset_1(B,k1_numbers,k5_numbers)
=> k6_ami_5(k2_tarski(k4_numbers,k3_finseq_2(k4_numbers)),k1_scmfsa_2,k1_scmfsa_5(A,B)) = k7_scmfsa_4(k8_scmfsa_4(k6_ami_5(k2_tarski(k4_numbers,k3_finseq_2(k4_numbers)),k1_scmfsa_2,A),B),B) ) ) ).
fof(t4_scmfsa_5,axiom,
! [A] :
( m1_ami_1(A,k2_tarski(k4_numbers,k3_finseq_2(k4_numbers)),k1_scmfsa_2)
=> ! [B] :
( m2_subset_1(B,k1_numbers,k5_numbers)
=> ! [C] :
( m1_struct_0(C,k1_scmfsa_2,u2_ami_1(k2_tarski(k4_numbers,k3_finseq_2(k4_numbers)),k1_scmfsa_2))
=> ( r2_hidden(C,k1_relat_1(A))
<=> r2_hidden(k2_scmfsa_4(C,B),k1_relat_1(k1_scmfsa_5(A,B))) ) ) ) ) ).
fof(t5_scmfsa_5,axiom,
! [A] :
( m1_ami_1(A,k2_tarski(k4_numbers,k3_finseq_2(k4_numbers)),k1_scmfsa_2)
=> ! [B] :
( m2_subset_1(B,k1_numbers,k5_numbers)
=> r2_hidden(k2_ami_1(k2_tarski(k4_numbers,k3_finseq_2(k4_numbers)),k1_scmfsa_2),k1_relat_1(k1_scmfsa_5(A,B))) ) ) ).
fof(t6_scmfsa_5,axiom,
! [A] :
( m1_ami_1(A,k2_tarski(k4_numbers,k3_finseq_2(k4_numbers)),k1_scmfsa_2)
=> ! [B] :
( m2_subset_1(B,k1_numbers,k5_numbers)
=> k13_ami_3(k2_tarski(k4_numbers,k3_finseq_2(k4_numbers)),k1_scmfsa_2,k1_scmfsa_5(A,B)) = k2_scmfsa_4(k13_ami_3(k2_tarski(k4_numbers,k3_finseq_2(k4_numbers)),k1_scmfsa_2,A),B) ) ) ).
fof(t7_scmfsa_5,axiom,
! [A] :
( m1_ami_1(A,k2_tarski(k4_numbers,k3_finseq_2(k4_numbers)),k1_scmfsa_2)
=> ! [B] :
( m2_subset_1(B,k1_numbers,k5_numbers)
=> ! [C] :
( m1_struct_0(C,k1_scmfsa_2,u2_ami_1(k2_tarski(k4_numbers,k3_finseq_2(k4_numbers)),k1_scmfsa_2))
=> ! [D] :
( m2_subset_1(D,k2_zfmisc_1(u3_ami_1(k2_tarski(k4_numbers,k3_finseq_2(k4_numbers)),k1_scmfsa_2),k13_finseq_1(k2_xboole_0(k3_tarski(k2_tarski(k4_numbers,k3_finseq_2(k4_numbers))),u1_struct_0(k1_scmfsa_2)))),u4_ami_1(k2_tarski(k4_numbers,k3_finseq_2(k4_numbers)),k1_scmfsa_2))
=> ( ( r2_hidden(C,k1_relat_1(k6_ami_5(k2_tarski(k4_numbers,k3_finseq_2(k4_numbers)),k1_scmfsa_2,A)))
& D = k1_funct_1(A,C) )
=> k4_scmfsa_4(D,B) = k1_funct_1(k1_scmfsa_5(A,B),k2_scmfsa_4(C,B)) ) ) ) ) ) ).
fof(t8_scmfsa_5,axiom,
! [A] :
( m1_ami_1(A,k2_tarski(k4_numbers,k3_finseq_2(k4_numbers)),k1_scmfsa_2)
=> ! [B] :
( m2_subset_1(B,k1_numbers,k5_numbers)
=> r1_tarski(k12_ami_3(k2_tarski(k4_numbers,k3_finseq_2(k4_numbers)),k1_scmfsa_2,k2_scmfsa_4(k13_ami_3(k2_tarski(k4_numbers,k3_finseq_2(k4_numbers)),k1_scmfsa_2,A),B)),k1_scmfsa_5(A,B)) ) ) ).
fof(t9_scmfsa_5,axiom,
! [A] :
( ( v1_ami_5(A,k2_tarski(k4_numbers,k3_finseq_2(k4_numbers)),k1_scmfsa_2)
& m1_ami_1(A,k2_tarski(k4_numbers,k3_finseq_2(k4_numbers)),k1_scmfsa_2) )
=> ! [B] :
( m1_ami_1(B,k2_tarski(k4_numbers,k3_finseq_2(k4_numbers)),k1_scmfsa_2)
=> ! [C] :
( m2_subset_1(C,k1_numbers,k5_numbers)
=> ( r2_hidden(k2_ami_1(k2_tarski(k4_numbers,k3_finseq_2(k4_numbers)),k1_scmfsa_2),k1_relat_1(B))
=> k1_scmfsa_5(k17_ami_1(k2_tarski(k4_numbers,k3_finseq_2(k4_numbers)),k1_scmfsa_2,B,A),C) = k17_ami_1(k2_tarski(k4_numbers,k3_finseq_2(k4_numbers)),k1_scmfsa_2,k1_scmfsa_5(B,C),A) ) ) ) ) ).
fof(t10_scmfsa_5,axiom,
! [A] :
( m2_subset_1(A,k1_numbers,k5_numbers)
=> ! [B] :
( ( v11_ami_1(B,k2_tarski(k4_numbers,k3_finseq_2(k4_numbers)),k1_scmfsa_2)
& m1_ami_1(B,k2_tarski(k4_numbers,k3_finseq_2(k4_numbers)),k1_scmfsa_2) )
=> ! [C] :
( m1_subset_1(C,k4_card_3(u5_ami_1(k2_tarski(k4_numbers,k3_finseq_2(k4_numbers)),k1_scmfsa_2)))
=> ! [D] :
( m1_subset_1(D,k4_card_3(u5_ami_1(k2_tarski(k4_numbers,k3_finseq_2(k4_numbers)),k1_scmfsa_2)))
=> ( ( r1_tarski(B,C)
& r1_tarski(k1_scmfsa_5(B,A),D) )
=> r1_tarski(B,k1_funct_4(C,k7_relat_1(D,k4_subset_1(u1_struct_0(k1_scmfsa_2),k2_scmfsa_2,k3_scmfsa_2)))) ) ) ) ) ) ).
fof(t11_scmfsa_5,axiom,
! [A] :
( m2_subset_1(A,k1_numbers,k5_numbers)
=> ! [B] :
( ( v11_ami_1(B,k2_tarski(k4_numbers,k3_finseq_2(k4_numbers)),k1_scmfsa_2)
& m1_ami_1(B,k2_tarski(k4_numbers,k3_finseq_2(k4_numbers)),k1_scmfsa_2) )
=> ( r2_hidden(k2_ami_1(k2_tarski(k4_numbers,k3_finseq_2(k4_numbers)),k1_scmfsa_2),k1_relat_1(B))
=> ! [C] :
( m1_subset_1(C,k4_card_3(u5_ami_1(k2_tarski(k4_numbers,k3_finseq_2(k4_numbers)),k1_scmfsa_2)))
=> ( r1_tarski(B,C)
=> ! [D] :
( m2_subset_1(D,k1_numbers,k5_numbers)
=> k11_ami_1(k2_tarski(k4_numbers,k3_finseq_2(k4_numbers)),k1_scmfsa_2,k10_ami_1(k2_tarski(k4_numbers,k3_finseq_2(k4_numbers)),k1_scmfsa_2,k8_ami_5(k2_tarski(k4_numbers,k3_finseq_2(k4_numbers)),k1_scmfsa_2,C,k1_scmfsa_5(B,A))),D) = k8_ami_5(k2_tarski(k4_numbers,k3_finseq_2(k4_numbers)),k1_scmfsa_2,k8_ami_5(k2_tarski(k4_numbers,k3_finseq_2(k4_numbers)),k1_scmfsa_2,k11_ami_1(k2_tarski(k4_numbers,k3_finseq_2(k4_numbers)),k1_scmfsa_2,k10_ami_1(k2_tarski(k4_numbers,k3_finseq_2(k4_numbers)),k1_scmfsa_2,C),D),k12_ami_3(k2_tarski(k4_numbers,k3_finseq_2(k4_numbers)),k1_scmfsa_2,k2_scmfsa_4(k6_ami_1(k2_tarski(k4_numbers,k3_finseq_2(k4_numbers)),k1_scmfsa_2,k11_ami_1(k2_tarski(k4_numbers,k3_finseq_2(k4_numbers)),k1_scmfsa_2,k10_ami_1(k2_tarski(k4_numbers,k3_finseq_2(k4_numbers)),k1_scmfsa_2,C),D)),A))),k6_ami_5(k2_tarski(k4_numbers,k3_finseq_2(k4_numbers)),k1_scmfsa_2,k1_scmfsa_5(B,A))) ) ) ) ) ) ) ).
fof(t12_scmfsa_5,axiom,
! [A] :
( m2_subset_1(A,k1_numbers,k5_numbers)
=> ! [B] :
( ( v11_ami_1(B,k2_tarski(k4_numbers,k3_finseq_2(k4_numbers)),k1_scmfsa_2)
& m1_ami_1(B,k2_tarski(k4_numbers,k3_finseq_2(k4_numbers)),k1_scmfsa_2) )
=> ! [C] :
( m1_subset_1(C,k4_card_3(u5_ami_1(k2_tarski(k4_numbers,k3_finseq_2(k4_numbers)),k1_scmfsa_2)))
=> ! [D] :
( m1_subset_1(D,k4_card_3(u5_ami_1(k2_tarski(k4_numbers,k3_finseq_2(k4_numbers)),k1_scmfsa_2)))
=> ! [E] :
( m1_subset_1(E,k4_card_3(u5_ami_1(k2_tarski(k4_numbers,k3_finseq_2(k4_numbers)),k1_scmfsa_2)))
=> ( ( r2_hidden(k2_ami_1(k2_tarski(k4_numbers,k3_finseq_2(k4_numbers)),k1_scmfsa_2),k1_relat_1(B))
& r1_tarski(B,C)
& r1_tarski(k1_scmfsa_5(B,A),D)
& E = k1_funct_4(C,k7_relat_1(D,k4_subset_1(u1_struct_0(k1_scmfsa_2),k2_scmfsa_2,k3_scmfsa_2))) )
=> ! [F] :
( m2_subset_1(F,k1_numbers,k5_numbers)
=> ( k2_scmfsa_4(k6_ami_1(k2_tarski(k4_numbers,k3_finseq_2(k4_numbers)),k1_scmfsa_2,k11_ami_1(k2_tarski(k4_numbers,k3_finseq_2(k4_numbers)),k1_scmfsa_2,k10_ami_1(k2_tarski(k4_numbers,k3_finseq_2(k4_numbers)),k1_scmfsa_2,C),F)),A) = k6_ami_1(k2_tarski(k4_numbers,k3_finseq_2(k4_numbers)),k1_scmfsa_2,k11_ami_1(k2_tarski(k4_numbers,k3_finseq_2(k4_numbers)),k1_scmfsa_2,k10_ami_1(k2_tarski(k4_numbers,k3_finseq_2(k4_numbers)),k1_scmfsa_2,D),F))
& k4_scmfsa_4(k8_ami_1(k2_tarski(k4_numbers,k3_finseq_2(k4_numbers)),k1_scmfsa_2,k11_ami_1(k2_tarski(k4_numbers,k3_finseq_2(k4_numbers)),k1_scmfsa_2,k10_ami_1(k2_tarski(k4_numbers,k3_finseq_2(k4_numbers)),k1_scmfsa_2,C),F)),A) = k8_ami_1(k2_tarski(k4_numbers,k3_finseq_2(k4_numbers)),k1_scmfsa_2,k11_ami_1(k2_tarski(k4_numbers,k3_finseq_2(k4_numbers)),k1_scmfsa_2,k10_ami_1(k2_tarski(k4_numbers,k3_finseq_2(k4_numbers)),k1_scmfsa_2,D),F))
& k7_relat_1(k11_ami_1(k2_tarski(k4_numbers,k3_finseq_2(k4_numbers)),k1_scmfsa_2,k10_ami_1(k2_tarski(k4_numbers,k3_finseq_2(k4_numbers)),k1_scmfsa_2,C),F),k1_relat_1(k7_ami_5(k2_tarski(k4_numbers,k3_finseq_2(k4_numbers)),k1_scmfsa_2,B))) = k7_relat_1(k11_ami_1(k2_tarski(k4_numbers,k3_finseq_2(k4_numbers)),k1_scmfsa_2,k10_ami_1(k2_tarski(k4_numbers,k3_finseq_2(k4_numbers)),k1_scmfsa_2,D),F),k1_relat_1(k7_ami_5(k2_tarski(k4_numbers,k3_finseq_2(k4_numbers)),k1_scmfsa_2,k1_scmfsa_5(B,A))))
& k7_relat_1(k11_ami_1(k2_tarski(k4_numbers,k3_finseq_2(k4_numbers)),k1_scmfsa_2,k10_ami_1(k2_tarski(k4_numbers,k3_finseq_2(k4_numbers)),k1_scmfsa_2,E),F),k4_subset_1(u1_struct_0(k1_scmfsa_2),k2_scmfsa_2,k3_scmfsa_2)) = k7_relat_1(k11_ami_1(k2_tarski(k4_numbers,k3_finseq_2(k4_numbers)),k1_scmfsa_2,k10_ami_1(k2_tarski(k4_numbers,k3_finseq_2(k4_numbers)),k1_scmfsa_2,D),F),k4_subset_1(u1_struct_0(k1_scmfsa_2),k2_scmfsa_2,k3_scmfsa_2)) ) ) ) ) ) ) ) ) ).
fof(t13_scmfsa_5,axiom,
! [A] :
( ( v11_ami_1(A,k2_tarski(k4_numbers,k3_finseq_2(k4_numbers)),k1_scmfsa_2)
& m1_ami_1(A,k2_tarski(k4_numbers,k3_finseq_2(k4_numbers)),k1_scmfsa_2) )
=> ! [B] :
( m2_subset_1(B,k1_numbers,k5_numbers)
=> ( r2_hidden(k2_ami_1(k2_tarski(k4_numbers,k3_finseq_2(k4_numbers)),k1_scmfsa_2),k1_relat_1(A))
=> ( v12_ami_1(A,k2_tarski(k4_numbers,k3_finseq_2(k4_numbers)),k1_scmfsa_2)
<=> v12_ami_1(k1_scmfsa_5(A,B),k2_tarski(k4_numbers,k3_finseq_2(k4_numbers)),k1_scmfsa_2) ) ) ) ) ).
fof(t14_scmfsa_5,axiom,
! [A] :
( m2_subset_1(A,k1_numbers,k5_numbers)
=> ! [B] :
( ( v11_ami_1(B,k2_tarski(k4_numbers,k3_finseq_2(k4_numbers)),k1_scmfsa_2)
& m1_ami_1(B,k2_tarski(k4_numbers,k3_finseq_2(k4_numbers)),k1_scmfsa_2) )
=> ( r2_hidden(k2_ami_1(k2_tarski(k4_numbers,k3_finseq_2(k4_numbers)),k1_scmfsa_2),k1_relat_1(B))
=> ! [C] :
( m1_subset_1(C,k4_card_3(u5_ami_1(k2_tarski(k4_numbers,k3_finseq_2(k4_numbers)),k1_scmfsa_2)))
=> ( r1_tarski(k1_scmfsa_5(B,A),C)
=> ! [D] :
( m2_subset_1(D,k1_numbers,k5_numbers)
=> k11_ami_1(k2_tarski(k4_numbers,k3_finseq_2(k4_numbers)),k1_scmfsa_2,k10_ami_1(k2_tarski(k4_numbers,k3_finseq_2(k4_numbers)),k1_scmfsa_2,C),D) = k1_funct_4(k1_funct_4(k8_ami_5(k2_tarski(k4_numbers,k3_finseq_2(k4_numbers)),k1_scmfsa_2,k11_ami_1(k2_tarski(k4_numbers,k3_finseq_2(k4_numbers)),k1_scmfsa_2,k10_ami_1(k2_tarski(k4_numbers,k3_finseq_2(k4_numbers)),k1_scmfsa_2,k8_ami_5(k2_tarski(k4_numbers,k3_finseq_2(k4_numbers)),k1_scmfsa_2,C,B)),D),k12_ami_3(k2_tarski(k4_numbers,k3_finseq_2(k4_numbers)),k1_scmfsa_2,k2_scmfsa_4(k6_ami_1(k2_tarski(k4_numbers,k3_finseq_2(k4_numbers)),k1_scmfsa_2,k11_ami_1(k2_tarski(k4_numbers,k3_finseq_2(k4_numbers)),k1_scmfsa_2,k10_ami_1(k2_tarski(k4_numbers,k3_finseq_2(k4_numbers)),k1_scmfsa_2,k8_ami_5(k2_tarski(k4_numbers,k3_finseq_2(k4_numbers)),k1_scmfsa_2,C,B)),D)),A))),k7_relat_1(C,k1_relat_1(k6_ami_5(k2_tarski(k4_numbers,k3_finseq_2(k4_numbers)),k1_scmfsa_2,B)))),k6_ami_5(k2_tarski(k4_numbers,k3_finseq_2(k4_numbers)),k1_scmfsa_2,k1_scmfsa_5(B,A))) ) ) ) ) ) ) ).
fof(t15_scmfsa_5,axiom,
! [A] :
( m2_subset_1(A,k1_numbers,k5_numbers)
=> ! [B] :
( m1_ami_1(B,k2_tarski(k4_numbers,k3_finseq_2(k4_numbers)),k1_scmfsa_2)
=> ( r2_hidden(k2_ami_1(k2_tarski(k4_numbers,k3_finseq_2(k4_numbers)),k1_scmfsa_2),k1_relat_1(B))
=> ! [C] :
( m1_subset_1(C,k4_card_3(u5_ami_1(k2_tarski(k4_numbers,k3_finseq_2(k4_numbers)),k1_scmfsa_2)))
=> ( ( r1_tarski(B,C)
& v11_ami_1(k1_scmfsa_5(B,A),k2_tarski(k4_numbers,k3_finseq_2(k4_numbers)),k1_scmfsa_2) )
=> ! [D] :
( m2_subset_1(D,k1_numbers,k5_numbers)
=> k11_ami_1(k2_tarski(k4_numbers,k3_finseq_2(k4_numbers)),k1_scmfsa_2,k10_ami_1(k2_tarski(k4_numbers,k3_finseq_2(k4_numbers)),k1_scmfsa_2,C),D) = k1_funct_4(k1_funct_4(k8_ami_5(k2_tarski(k4_numbers,k3_finseq_2(k4_numbers)),k1_scmfsa_2,k11_ami_1(k2_tarski(k4_numbers,k3_finseq_2(k4_numbers)),k1_scmfsa_2,k10_ami_1(k2_tarski(k4_numbers,k3_finseq_2(k4_numbers)),k1_scmfsa_2,k8_ami_5(k2_tarski(k4_numbers,k3_finseq_2(k4_numbers)),k1_scmfsa_2,C,k1_scmfsa_5(B,A))),D),k12_ami_3(k2_tarski(k4_numbers,k3_finseq_2(k4_numbers)),k1_scmfsa_2,k3_scmfsa_4(k6_ami_1(k2_tarski(k4_numbers,k3_finseq_2(k4_numbers)),k1_scmfsa_2,k11_ami_1(k2_tarski(k4_numbers,k3_finseq_2(k4_numbers)),k1_scmfsa_2,k10_ami_1(k2_tarski(k4_numbers,k3_finseq_2(k4_numbers)),k1_scmfsa_2,k8_ami_5(k2_tarski(k4_numbers,k3_finseq_2(k4_numbers)),k1_scmfsa_2,C,k1_scmfsa_5(B,A))),D)),A))),k7_relat_1(C,k1_relat_1(k6_ami_5(k2_tarski(k4_numbers,k3_finseq_2(k4_numbers)),k1_scmfsa_2,k1_scmfsa_5(B,A))))),k6_ami_5(k2_tarski(k4_numbers,k3_finseq_2(k4_numbers)),k1_scmfsa_2,B)) ) ) ) ) ) ) ).
fof(t16_scmfsa_5,axiom,
! [A] :
( m1_ami_1(A,k2_tarski(k4_numbers,k3_finseq_2(k4_numbers)),k1_scmfsa_2)
=> ( r2_hidden(k2_ami_1(k2_tarski(k4_numbers,k3_finseq_2(k4_numbers)),k1_scmfsa_2),k1_relat_1(A))
=> ! [B] :
( m2_subset_1(B,k1_numbers,k5_numbers)
=> ( v11_ami_1(A,k2_tarski(k4_numbers,k3_finseq_2(k4_numbers)),k1_scmfsa_2)
<=> v11_ami_1(k1_scmfsa_5(A,B),k2_tarski(k4_numbers,k3_finseq_2(k4_numbers)),k1_scmfsa_2) ) ) ) ) ).
fof(t17_scmfsa_5,axiom,
! [A] :
( ( v11_ami_1(A,k2_tarski(k4_numbers,k3_finseq_2(k4_numbers)),k1_scmfsa_2)
& v12_ami_1(A,k2_tarski(k4_numbers,k3_finseq_2(k4_numbers)),k1_scmfsa_2)
& m1_ami_1(A,k2_tarski(k4_numbers,k3_finseq_2(k4_numbers)),k1_scmfsa_2) )
=> ( r2_hidden(k2_ami_1(k2_tarski(k4_numbers,k3_finseq_2(k4_numbers)),k1_scmfsa_2),k1_relat_1(A))
=> ! [B] :
( m2_subset_1(B,k1_numbers,k5_numbers)
=> k7_ami_5(k2_tarski(k4_numbers,k3_finseq_2(k4_numbers)),k1_scmfsa_2,k18_ami_1(k2_tarski(k4_numbers,k3_finseq_2(k4_numbers)),k1_scmfsa_2,A)) = k7_ami_5(k2_tarski(k4_numbers,k3_finseq_2(k4_numbers)),k1_scmfsa_2,k18_ami_1(k2_tarski(k4_numbers,k3_finseq_2(k4_numbers)),k1_scmfsa_2,k1_scmfsa_5(A,B))) ) ) ) ).
fof(t18_scmfsa_5,axiom,
! [A] :
( ( v1_funct_1(A)
& m2_relset_1(A,k14_ami_1(k2_tarski(k4_numbers,k3_finseq_2(k4_numbers)),k1_scmfsa_2),k14_ami_1(k2_tarski(k4_numbers,k3_finseq_2(k4_numbers)),k1_scmfsa_2)) )
=> ! [B] :
( m1_ami_1(B,k2_tarski(k4_numbers,k3_finseq_2(k4_numbers)),k1_scmfsa_2)
=> ( ( r2_hidden(k2_ami_1(k2_tarski(k4_numbers,k3_finseq_2(k4_numbers)),k1_scmfsa_2),k1_relat_1(B))
& v2_ami_5(A,k2_tarski(k4_numbers,k3_finseq_2(k4_numbers)),k1_scmfsa_2) )
=> ! [C] :
( m2_subset_1(C,k1_numbers,k5_numbers)
=> ( r1_ami_1(k2_tarski(k4_numbers,k3_finseq_2(k4_numbers)),k1_scmfsa_2,B,A)
<=> r1_ami_1(k2_tarski(k4_numbers,k3_finseq_2(k4_numbers)),k1_scmfsa_2,k1_scmfsa_5(B,C),A) ) ) ) ) ) ).
fof(dt_k1_scmfsa_5,axiom,
! [A,B] :
( ( m1_ami_1(A,k2_tarski(k4_numbers,k3_finseq_2(k4_numbers)),k1_scmfsa_2)
& m1_subset_1(B,k5_numbers) )
=> m1_ami_1(k1_scmfsa_5(A,B),k2_tarski(k4_numbers,k3_finseq_2(k4_numbers)),k1_scmfsa_2) ) ).
fof(t3_scmfsa_5,axiom,
! [A] :
( m2_subset_1(A,k1_numbers,k5_numbers)
=> ! [B] :
( m1_ami_1(B,k2_tarski(k4_numbers,k3_finseq_2(k4_numbers)),k1_scmfsa_2)
=> k1_relat_1(k6_ami_5(k2_tarski(k4_numbers,k3_finseq_2(k4_numbers)),k1_scmfsa_2,k1_scmfsa_5(B,A))) = a_2_0_scmfsa_5(A,B) ) ) ).
fof(fraenkel_a_2_0_scmfsa_5,axiom,
! [A,B,C] :
( ( m2_subset_1(B,k1_numbers,k5_numbers)
& m1_ami_1(C,k2_tarski(k4_numbers,k3_finseq_2(k4_numbers)),k1_scmfsa_2) )
=> ( r2_hidden(A,a_2_0_scmfsa_5(B,C))
<=> ? [D] :
( m2_subset_1(D,k1_numbers,k5_numbers)
& A = k5_scmfsa_2(k1_nat_1(D,B))
& r2_hidden(k5_scmfsa_2(D),k1_relat_1(k6_ami_5(k2_tarski(k4_numbers,k3_finseq_2(k4_numbers)),k1_scmfsa_2,C))) ) ) ) ).
%------------------------------------------------------------------------------