SET007 Axioms: SET007+44.ax
%------------------------------------------------------------------------------
% File : SET007+44 : TPTP v9.0.0. Released v3.4.0.
% Domain : Set Theory
% Axioms : Strong Arithmetic of Real Numbers
% Version : [Urb08] axioms.
% English :
% Refs : [Mat90] Matuszewski (1990), Formalized Mathematics
% : [Urb07] Urban (2007), MPTP 0.2: Design, Implementation, and In
% : [Urb08] Urban (2006), Email to G. Sutcliffe
% Source : [Urb08]
% Names : axioms [Urb08]
% Status : Satisfiable
% Syntax : Number of formulae : 31 ( 24 unt; 0 def)
% Number of atoms : 63 ( 5 equ)
% Maximal formula atoms : 14 ( 2 avg)
% Number of connectives : 38 ( 6 ~; 0 |; 13 &)
% ( 1 <=>; 18 =>; 0 <=; 0 <~>)
% Maximal formula depth : 17 ( 3 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of predicates : 9 ( 7 usr; 1 prp; 0-3 aty)
% Number of functors : 8 ( 8 usr; 4 con; 0-2 aty)
% Number of variables : 19 ( 15 !; 4 ?)
% SPC :
% Comments : The individual reference can be found in [Mat90] by looking for
% the name provided by [Urb08].
% : Translated by MPTP from the Mizar Mathematical Library 4.48.930.
% : These set theory axioms are used in encodings of problems in
% various domains, including ALG, CAT, GRP, LAT, SET, and TOP.
%------------------------------------------------------------------------------
fof(t1_axioms,axiom,
$true ).
fof(t2_axioms,axiom,
$true ).
fof(t3_axioms,axiom,
$true ).
fof(t4_axioms,axiom,
$true ).
fof(t5_axioms,axiom,
$true ).
fof(t6_axioms,axiom,
$true ).
fof(t7_axioms,axiom,
$true ).
fof(t8_axioms,axiom,
$true ).
fof(t9_axioms,axiom,
$true ).
fof(t10_axioms,axiom,
$true ).
fof(t11_axioms,axiom,
$true ).
fof(t12_axioms,axiom,
$true ).
fof(t13_axioms,axiom,
$true ).
fof(t14_axioms,axiom,
$true ).
fof(t15_axioms,axiom,
$true ).
fof(t16_axioms,axiom,
$true ).
fof(t17_axioms,axiom,
$true ).
fof(t18_axioms,axiom,
$true ).
fof(t19_axioms,axiom,
! [A] :
( v1_xreal_0(A)
=> ? [B] :
( v1_xreal_0(B)
& k2_xcmplx_0(A,B) = np__0 ) ) ).
fof(t20_axioms,axiom,
! [A] :
( v1_xreal_0(A)
=> ~ ( A != np__0
& ! [B] :
( v1_xreal_0(B)
=> k3_xcmplx_0(A,B) != np__1 ) ) ) ).
fof(t21_axioms,axiom,
$true ).
fof(t22_axioms,axiom,
$true ).
fof(t23_axioms,axiom,
$true ).
fof(t24_axioms,axiom,
$true ).
fof(t25_axioms,axiom,
$true ).
fof(t26_axioms,axiom,
! [A] :
( m1_subset_1(A,k1_zfmisc_1(k1_numbers))
=> ! [B] :
( m1_subset_1(B,k1_zfmisc_1(k1_numbers))
=> ~ ( ! [C] :
( v1_xreal_0(C)
=> ! [D] :
( v1_xreal_0(D)
=> ( ( r2_hidden(C,A)
& r2_hidden(D,B) )
=> r1_xreal_0(C,D) ) ) )
& ! [C] :
( v1_xreal_0(C)
=> ? [D] :
( v1_xreal_0(D)
& ? [E] :
( v1_xreal_0(E)
& r2_hidden(D,A)
& r2_hidden(E,B)
& ~ ( r1_xreal_0(D,C)
& r1_xreal_0(C,E) ) ) ) ) ) ) ) ).
fof(t27_axioms,axiom,
$true ).
fof(t28_axioms,axiom,
! [A] :
( v1_xreal_0(A)
=> ! [B] :
( v1_xreal_0(B)
=> ( ( r2_hidden(A,k5_numbers)
& r2_hidden(B,k5_numbers) )
=> r2_hidden(k2_xcmplx_0(A,B),k5_numbers) ) ) ) ).
fof(t29_axioms,axiom,
! [A] :
( m1_subset_1(A,k1_zfmisc_1(k1_numbers))
=> ( ( r2_hidden(np__0,A)
& ! [B] :
( v1_xreal_0(B)
=> ( r2_hidden(B,A)
=> r2_hidden(k2_xcmplx_0(B,np__1),A) ) ) )
=> r1_tarski(k5_numbers,A) ) ) ).
fof(t30_axioms,axiom,
! [A] :
( v4_ordinal2(A)
=> A = a_1_0_axioms(A) ) ).
fof(fraenkel_a_1_0_axioms,axiom,
! [A,B] :
( v4_ordinal2(B)
=> ( r2_hidden(A,a_1_0_axioms(B))
<=> ? [C] :
( m2_subset_1(C,k1_numbers,k5_numbers)
& A = C
& ~ r1_xreal_0(B,C) ) ) ) ).
%------------------------------------------------------------------------------