SET007 Axioms: SET007+426.ax
%------------------------------------------------------------------------------
% File : SET007+426 : TPTP v9.0.0. Released v3.4.0.
% Domain : Set Theory
% Axioms : The Cantor Set
% Version : [Urb08] axioms.
% English :
% Refs : [Mat90] Matuszewski (1990), Formalized Mathematics
% : [Urb07] Urban (2007), MPTP 0.2: Design, Implementation, and In
% : [Urb08] Urban (2006), Email to G. Sutcliffe
% Source : [Urb08]
% Names : cantor_1 [Urb08]
% Status : Satisfiable
% Syntax : Number of formulae : 39 ( 3 unt; 0 def)
% Number of atoms : 153 ( 17 equ)
% Maximal formula atoms : 14 ( 3 avg)
% Number of connectives : 129 ( 15 ~; 0 |; 45 &)
% ( 10 <=>; 59 =>; 0 <=; 0 <~>)
% Maximal formula depth : 17 ( 6 avg)
% Maximal term depth : 5 ( 1 avg)
% Number of predicates : 20 ( 18 usr; 1 prp; 0-3 aty)
% Number of functors : 21 ( 21 usr; 5 con; 0-5 aty)
% Number of variables : 91 ( 82 !; 9 ?)
% SPC :
% Comments : The individual reference can be found in [Mat90] by looking for
% the name provided by [Urb08].
% : Translated by MPTP from the Mizar Mathematical Library 4.48.930.
% : These set theory axioms are used in encodings of problems in
% various domains, including ALG, CAT, GRP, LAT, SET, and TOP.
%------------------------------------------------------------------------------
fof(fc1_cantor_1,axiom,
! [A,B] :
( ~ v1_xboole_0(B)
=> ( v1_relat_1(k2_funcop_1(A,B))
& v2_relat_1(k2_funcop_1(A,B))
& v1_funct_1(k2_funcop_1(A,B)) ) ) ).
fof(fc2_cantor_1,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& v2_pre_topc(A)
& l1_pre_topc(A) )
=> ~ v1_xboole_0(u1_pre_topc(A)) ) ).
fof(fc3_cantor_1,axiom,
! [A,B] :
( m1_subset_1(B,k1_zfmisc_1(k1_zfmisc_1(A)))
=> ~ v1_xboole_0(k2_cantor_1(A,B)) ) ).
fof(d1_cantor_1,axiom,
! [A,B] :
( m1_subset_1(B,k1_zfmisc_1(k1_zfmisc_1(A)))
=> ! [C] :
( m1_subset_1(C,k1_zfmisc_1(k1_zfmisc_1(A)))
=> ( C = k1_cantor_1(A,B)
<=> ! [D] :
( m1_subset_1(D,k1_zfmisc_1(A))
=> ( r2_hidden(D,C)
<=> ? [E] :
( m1_subset_1(E,k1_zfmisc_1(k1_zfmisc_1(A)))
& r1_tarski(E,B)
& D = k5_setfam_1(A,E) ) ) ) ) ) ) ).
fof(d2_cantor_1,axiom,
! [A] :
( l1_pre_topc(A)
=> ! [B] :
( m1_subset_1(B,k1_zfmisc_1(k1_zfmisc_1(u1_struct_0(A))))
=> ( m1_cantor_1(B,A)
<=> ( r1_tarski(B,u1_pre_topc(A))
& r1_tarski(u1_pre_topc(A),k1_cantor_1(u1_struct_0(A),B)) ) ) ) ) ).
fof(t1_cantor_1,axiom,
! [A,B] :
( m1_subset_1(B,k1_zfmisc_1(k1_zfmisc_1(A)))
=> r1_tarski(B,k1_cantor_1(A,B)) ) ).
fof(t2_cantor_1,axiom,
! [A] :
( l1_pre_topc(A)
=> m1_cantor_1(u1_pre_topc(A),A) ) ).
fof(t3_cantor_1,axiom,
! [A] :
( l1_pre_topc(A)
=> v1_tops_2(u1_pre_topc(A),A) ) ).
fof(d3_cantor_1,axiom,
$true ).
fof(d4_cantor_1,axiom,
! [A,B] :
( m1_subset_1(B,k1_zfmisc_1(k1_zfmisc_1(A)))
=> ! [C] :
( m1_subset_1(C,k1_zfmisc_1(k1_zfmisc_1(A)))
=> ( C = k2_cantor_1(A,B)
<=> ! [D] :
( m1_subset_1(D,k1_zfmisc_1(A))
=> ( r2_hidden(D,C)
<=> ? [E] :
( m1_subset_1(E,k1_zfmisc_1(k1_zfmisc_1(A)))
& r1_tarski(E,B)
& v1_finset_1(E)
& D = k8_setfam_1(A,E) ) ) ) ) ) ) ).
fof(t4_cantor_1,axiom,
! [A,B] :
( m1_subset_1(B,k1_zfmisc_1(k1_zfmisc_1(A)))
=> r1_tarski(B,k2_cantor_1(A,B)) ) ).
fof(t5_cantor_1,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& v2_pre_topc(A)
& l1_pre_topc(A) )
=> u1_pre_topc(A) = k2_cantor_1(u1_struct_0(A),u1_pre_topc(A)) ) ).
fof(t6_cantor_1,axiom,
! [A] :
( ( v2_pre_topc(A)
& l1_pre_topc(A) )
=> u1_pre_topc(A) = k1_cantor_1(u1_struct_0(A),u1_pre_topc(A)) ) ).
fof(t7_cantor_1,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& v2_pre_topc(A)
& l1_pre_topc(A) )
=> u1_pre_topc(A) = k1_cantor_1(u1_struct_0(A),k2_cantor_1(u1_struct_0(A),u1_pre_topc(A))) ) ).
fof(t8_cantor_1,axiom,
! [A,B] :
( m1_subset_1(B,k1_zfmisc_1(k1_zfmisc_1(A)))
=> r2_hidden(A,k2_cantor_1(A,B)) ) ).
fof(t9_cantor_1,axiom,
! [A,B] :
( m1_subset_1(B,k1_zfmisc_1(k1_zfmisc_1(A)))
=> ! [C] :
( m1_subset_1(C,k1_zfmisc_1(k1_zfmisc_1(A)))
=> ( r1_tarski(B,C)
=> r1_tarski(k1_cantor_1(A,B),k1_cantor_1(A,C)) ) ) ) ).
fof(t10_cantor_1,axiom,
$true ).
fof(t11_cantor_1,axiom,
$true ).
fof(t13_cantor_1,axiom,
! [A,B] :
( m1_subset_1(B,k1_zfmisc_1(k1_zfmisc_1(A)))
=> k2_cantor_1(A,B) = k2_cantor_1(A,k2_cantor_1(A,B)) ) ).
fof(t14_cantor_1,axiom,
! [A,B] :
( m1_subset_1(B,k1_zfmisc_1(k1_zfmisc_1(A)))
=> ! [C,D] :
( ( r2_hidden(C,k2_cantor_1(A,B))
& r2_hidden(D,k2_cantor_1(A,B)) )
=> r2_hidden(k3_xboole_0(C,D),k2_cantor_1(A,B)) ) ) ).
fof(t15_cantor_1,axiom,
! [A,B] :
( m1_subset_1(B,k1_zfmisc_1(k1_zfmisc_1(A)))
=> ! [C,D] :
( ( r1_tarski(C,k2_cantor_1(A,B))
& r1_tarski(D,k2_cantor_1(A,B)) )
=> r1_tarski(k3_setfam_1(C,D),k2_cantor_1(A,B)) ) ) ).
fof(t16_cantor_1,axiom,
! [A,B] :
( m1_subset_1(B,k1_zfmisc_1(k1_zfmisc_1(A)))
=> ! [C] :
( m1_subset_1(C,k1_zfmisc_1(k1_zfmisc_1(A)))
=> ( r1_tarski(B,C)
=> r1_tarski(k2_cantor_1(A,B),k2_cantor_1(A,C)) ) ) ) ).
fof(t17_cantor_1,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ! [B] :
( m1_subset_1(B,k1_zfmisc_1(k1_zfmisc_1(A)))
=> v2_pre_topc(g1_pre_topc(A,k1_cantor_1(A,k2_cantor_1(A,B)))) ) ) ).
fof(d5_cantor_1,axiom,
! [A] :
( l1_pre_topc(A)
=> ! [B] :
( m1_subset_1(B,k1_zfmisc_1(k1_zfmisc_1(u1_struct_0(A))))
=> ( m2_cantor_1(B,A)
<=> ( r1_tarski(B,u1_pre_topc(A))
& ? [C] :
( m1_cantor_1(C,A)
& r1_tarski(C,k2_cantor_1(u1_struct_0(A),B)) ) ) ) ) ) ).
fof(t18_cantor_1,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ! [B] :
( m1_subset_1(B,k1_zfmisc_1(k1_zfmisc_1(A)))
=> m1_cantor_1(B,g1_pre_topc(A,k1_cantor_1(A,B))) ) ) ).
fof(t19_cantor_1,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& v1_pre_topc(A)
& v2_pre_topc(A)
& l1_pre_topc(A) )
=> ! [B] :
( ( ~ v3_struct_0(B)
& v1_pre_topc(B)
& v2_pre_topc(B)
& l1_pre_topc(B) )
=> ! [C] :
( m2_cantor_1(C,A)
=> ( ( u1_struct_0(A) = u1_struct_0(B)
& m2_cantor_1(C,B) )
=> A = B ) ) ) ) ).
fof(t20_cantor_1,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ! [B] :
( m1_subset_1(B,k1_zfmisc_1(k1_zfmisc_1(A)))
=> m2_cantor_1(B,g1_pre_topc(A,k1_cantor_1(A,k2_cantor_1(A,B)))) ) ) ).
fof(d6_cantor_1,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& v1_pre_topc(A)
& v2_pre_topc(A)
& l1_pre_topc(A) )
=> ( A = k4_cantor_1
<=> ( u1_struct_0(A) = k4_card_3(k2_funcop_1(k5_numbers,k2_tarski(np__0,np__1)))
& ? [B] :
( m2_cantor_1(B,A)
& ! [C] :
( m1_subset_1(C,k1_zfmisc_1(k4_card_3(k2_funcop_1(k5_numbers,k2_tarski(np__0,np__1)))))
=> ( r2_hidden(C,B)
<=> ? [D] :
( m2_subset_1(D,k1_numbers,k5_numbers)
& ? [E] :
( m2_subset_1(E,k1_numbers,k5_numbers)
& ! [F] :
( m1_subset_1(F,k4_card_3(k2_funcop_1(k5_numbers,k2_tarski(np__0,np__1))))
=> ( r2_hidden(F,C)
<=> k1_funct_1(F,D) = E ) ) ) ) ) ) ) ) ) ) ).
fof(dt_m1_cantor_1,axiom,
! [A] :
( l1_pre_topc(A)
=> ! [B] :
( m1_cantor_1(B,A)
=> m1_subset_1(B,k1_zfmisc_1(k1_zfmisc_1(u1_struct_0(A)))) ) ) ).
fof(existence_m1_cantor_1,axiom,
! [A] :
( l1_pre_topc(A)
=> ? [B] : m1_cantor_1(B,A) ) ).
fof(dt_m2_cantor_1,axiom,
! [A] :
( l1_pre_topc(A)
=> ! [B] :
( m2_cantor_1(B,A)
=> m1_subset_1(B,k1_zfmisc_1(k1_zfmisc_1(u1_struct_0(A)))) ) ) ).
fof(existence_m2_cantor_1,axiom,
! [A] :
( l1_pre_topc(A)
=> ? [B] : m2_cantor_1(B,A) ) ).
fof(dt_k1_cantor_1,axiom,
! [A,B] :
( m1_subset_1(B,k1_zfmisc_1(k1_zfmisc_1(A)))
=> m1_subset_1(k1_cantor_1(A,B),k1_zfmisc_1(k1_zfmisc_1(A))) ) ).
fof(dt_k2_cantor_1,axiom,
! [A,B] :
( m1_subset_1(B,k1_zfmisc_1(k1_zfmisc_1(A)))
=> m1_subset_1(k2_cantor_1(A,B),k1_zfmisc_1(k1_zfmisc_1(A))) ) ).
fof(dt_k3_cantor_1,axiom,
! [A,B,C,D,E] :
( ( m1_subset_1(C,k1_zfmisc_1(k1_zfmisc_1(A)))
& v1_funct_1(D)
& v1_funct_2(D,B,k1_zfmisc_1(C))
& m1_relset_1(D,B,k1_zfmisc_1(C)) )
=> m1_subset_1(k3_cantor_1(A,B,C,D,E),k1_zfmisc_1(k1_zfmisc_1(A))) ) ).
fof(redefinition_k3_cantor_1,axiom,
! [A,B,C,D,E] :
( ( m1_subset_1(C,k1_zfmisc_1(k1_zfmisc_1(A)))
& v1_funct_1(D)
& v1_funct_2(D,B,k1_zfmisc_1(C))
& m1_relset_1(D,B,k1_zfmisc_1(C)) )
=> k3_cantor_1(A,B,C,D,E) = k1_funct_1(D,E) ) ).
fof(dt_k4_cantor_1,axiom,
( ~ v3_struct_0(k4_cantor_1)
& v1_pre_topc(k4_cantor_1)
& v2_pre_topc(k4_cantor_1)
& l1_pre_topc(k4_cantor_1) ) ).
fof(t12_cantor_1,axiom,
! [A,B] :
( ( ~ v1_xboole_0(B)
& m1_subset_1(B,k1_zfmisc_1(k1_zfmisc_1(k1_zfmisc_1(A)))) )
=> ! [C] :
( m1_subset_1(C,k1_zfmisc_1(k1_zfmisc_1(A)))
=> ( C = a_2_0_cantor_1(A,B)
=> k8_setfam_1(A,C) = k8_setfam_1(A,k5_setfam_1(k1_zfmisc_1(A),B)) ) ) ) ).
fof(fraenkel_a_2_0_cantor_1,axiom,
! [A,B,C] :
( ( ~ v1_xboole_0(C)
& m1_subset_1(C,k1_zfmisc_1(k1_zfmisc_1(k1_zfmisc_1(B)))) )
=> ( r2_hidden(A,a_2_0_cantor_1(B,C))
<=> ? [D] :
( m2_subset_1(D,k1_zfmisc_1(k1_zfmisc_1(B)),C)
& A = k8_setfam_1(B,D) ) ) ) ).
%------------------------------------------------------------------------------