SET007 Axioms: SET007+41.ax


%------------------------------------------------------------------------------
% File     : SET007+41 : TPTP v9.0.0. Released v3.4.0.
% Domain   : Set Theory
% Axioms   : Basic Properties of Real Numbers - Requirements
% Version  : [Urb08] axioms.
% English  :

% Refs     : [Mat90] Matuszewski (1990), Formalized Mathematics
%          : [Urb07] Urban (2007), MPTP 0.2: Design, Implementation, and In
%          : [Urb08] Urban (2006), Email to G. Sutcliffe
% Source   : [Urb08]
% Names    : real [Urb08]

% Status   : Satisfiable
% Syntax   : Number of formulae    :    8 (   0 unt;   0 def)
%            Number of atoms       :   42 (   0 equ)
%            Maximal formula atoms :    6 (   5 avg)
%            Number of connectives :   46 (  12   ~;   4   |;  10   &)
%                                         (   0 <=>;  20  =>;   0  <=;   0 <~>)
%            Maximal formula depth :    9 (   8 avg)
%            Maximal term depth    :    1 (   1 avg)
%            Number of predicates  :    5 (   5 usr;   0 prp; 1-2 aty)
%            Number of functors    :    0 (   0 usr;   0 con; --- aty)
%            Number of variables   :   16 (  16   !;   0   ?)
% SPC      : 

% Comments : The individual reference can be found in [Mat90] by looking for
%            the name provided by [Urb08].
%          : Translated by MPTP from the Mizar Mathematical Library 4.48.930.
%          : These set theory axioms are used in encodings of problems in
%            various domains, including ALG, CAT, GRP, LAT, SET, and TOP.
%------------------------------------------------------------------------------
fof(t1_real,axiom,
    ! [A] :
      ( v1_xreal_0(A)
     => ! [B] :
          ( v1_xreal_0(B)
         => ( ( r1_xreal_0(A,B)
              & v2_xreal_0(A) )
           => v2_xreal_0(B) ) ) ) ).

fof(t2_real,axiom,
    ! [A] :
      ( v1_xreal_0(A)
     => ! [B] :
          ( v1_xreal_0(B)
         => ( ( r1_xreal_0(A,B)
              & v3_xreal_0(B) )
           => v3_xreal_0(A) ) ) ) ).

fof(t3_real,axiom,
    ! [A] :
      ( v1_xreal_0(A)
     => ! [B] :
          ( v1_xreal_0(B)
         => ~ ( r1_xreal_0(A,B)
              & ~ v3_xreal_0(A)
              & v3_xreal_0(B) ) ) ) ).

fof(t4_real,axiom,
    ! [A] :
      ( v1_xreal_0(A)
     => ! [B] :
          ( v1_xreal_0(B)
         => ~ ( r1_xreal_0(A,B)
              & ~ v2_xreal_0(B)
              & v2_xreal_0(A) ) ) ) ).

fof(t5_real,axiom,
    ! [A] :
      ( v1_xreal_0(A)
     => ! [B] :
          ( v1_xreal_0(B)
         => ( r1_xreal_0(A,B)
           => ( v1_xboole_0(B)
              | v3_xreal_0(A)
              | v2_xreal_0(B) ) ) ) ) ).

fof(t6_real,axiom,
    ! [A] :
      ( v1_xreal_0(A)
     => ! [B] :
          ( v1_xreal_0(B)
         => ( r1_xreal_0(A,B)
           => ( v1_xboole_0(A)
              | v2_xreal_0(B)
              | v3_xreal_0(A) ) ) ) ) ).

fof(t7_real,axiom,
    ! [A] :
      ( v1_xreal_0(A)
     => ! [B] :
          ( v1_xreal_0(B)
         => ~ ( ~ r1_xreal_0(A,B)
              & ~ v2_xreal_0(A)
              & ~ v3_xreal_0(B) ) ) ) ).

fof(t8_real,axiom,
    ! [A] :
      ( v1_xreal_0(A)
     => ! [B] :
          ( v1_xreal_0(B)
         => ~ ( ~ r1_xreal_0(A,B)
              & ~ v3_xreal_0(B)
              & ~ v2_xreal_0(A) ) ) ) ).

%------------------------------------------------------------------------------