SET007 Axioms: SET007+41.ax
%------------------------------------------------------------------------------
% File : SET007+41 : TPTP v9.0.0. Released v3.4.0.
% Domain : Set Theory
% Axioms : Basic Properties of Real Numbers - Requirements
% Version : [Urb08] axioms.
% English :
% Refs : [Mat90] Matuszewski (1990), Formalized Mathematics
% : [Urb07] Urban (2007), MPTP 0.2: Design, Implementation, and In
% : [Urb08] Urban (2006), Email to G. Sutcliffe
% Source : [Urb08]
% Names : real [Urb08]
% Status : Satisfiable
% Syntax : Number of formulae : 8 ( 0 unt; 0 def)
% Number of atoms : 42 ( 0 equ)
% Maximal formula atoms : 6 ( 5 avg)
% Number of connectives : 46 ( 12 ~; 4 |; 10 &)
% ( 0 <=>; 20 =>; 0 <=; 0 <~>)
% Maximal formula depth : 9 ( 8 avg)
% Maximal term depth : 1 ( 1 avg)
% Number of predicates : 5 ( 5 usr; 0 prp; 1-2 aty)
% Number of functors : 0 ( 0 usr; 0 con; --- aty)
% Number of variables : 16 ( 16 !; 0 ?)
% SPC :
% Comments : The individual reference can be found in [Mat90] by looking for
% the name provided by [Urb08].
% : Translated by MPTP from the Mizar Mathematical Library 4.48.930.
% : These set theory axioms are used in encodings of problems in
% various domains, including ALG, CAT, GRP, LAT, SET, and TOP.
%------------------------------------------------------------------------------
fof(t1_real,axiom,
! [A] :
( v1_xreal_0(A)
=> ! [B] :
( v1_xreal_0(B)
=> ( ( r1_xreal_0(A,B)
& v2_xreal_0(A) )
=> v2_xreal_0(B) ) ) ) ).
fof(t2_real,axiom,
! [A] :
( v1_xreal_0(A)
=> ! [B] :
( v1_xreal_0(B)
=> ( ( r1_xreal_0(A,B)
& v3_xreal_0(B) )
=> v3_xreal_0(A) ) ) ) ).
fof(t3_real,axiom,
! [A] :
( v1_xreal_0(A)
=> ! [B] :
( v1_xreal_0(B)
=> ~ ( r1_xreal_0(A,B)
& ~ v3_xreal_0(A)
& v3_xreal_0(B) ) ) ) ).
fof(t4_real,axiom,
! [A] :
( v1_xreal_0(A)
=> ! [B] :
( v1_xreal_0(B)
=> ~ ( r1_xreal_0(A,B)
& ~ v2_xreal_0(B)
& v2_xreal_0(A) ) ) ) ).
fof(t5_real,axiom,
! [A] :
( v1_xreal_0(A)
=> ! [B] :
( v1_xreal_0(B)
=> ( r1_xreal_0(A,B)
=> ( v1_xboole_0(B)
| v3_xreal_0(A)
| v2_xreal_0(B) ) ) ) ) ).
fof(t6_real,axiom,
! [A] :
( v1_xreal_0(A)
=> ! [B] :
( v1_xreal_0(B)
=> ( r1_xreal_0(A,B)
=> ( v1_xboole_0(A)
| v2_xreal_0(B)
| v3_xreal_0(A) ) ) ) ) ).
fof(t7_real,axiom,
! [A] :
( v1_xreal_0(A)
=> ! [B] :
( v1_xreal_0(B)
=> ~ ( ~ r1_xreal_0(A,B)
& ~ v2_xreal_0(A)
& ~ v3_xreal_0(B) ) ) ) ).
fof(t8_real,axiom,
! [A] :
( v1_xreal_0(A)
=> ! [B] :
( v1_xreal_0(B)
=> ~ ( ~ r1_xreal_0(A,B)
& ~ v3_xreal_0(B)
& ~ v2_xreal_0(A) ) ) ) ).
%------------------------------------------------------------------------------