SET007 Axioms: SET007+39.ax
%------------------------------------------------------------------------------
% File : SET007+39 : TPTP v9.0.0. Released v3.4.0.
% Domain : Set Theory
% Axioms : Field Properties of Complex Numbers - Requirements
% Version : [Urb08] axioms.
% English :
% Refs : [Mat90] Matuszewski (1990), Formalized Mathematics
% : [Urb07] Urban (2007), MPTP 0.2: Design, Implementation, and In
% : [Urb08] Urban (2006), Email to G. Sutcliffe
% Source : [Urb08]
% Names : arithm [Urb08]
% Status : Satisfiable
% Syntax : Number of formulae : 6 ( 0 unt; 0 def)
% Number of atoms : 12 ( 6 equ)
% Maximal formula atoms : 2 ( 2 avg)
% Number of connectives : 6 ( 0 ~; 0 |; 0 &)
% ( 0 <=>; 6 =>; 0 <=; 0 <~>)
% Maximal formula depth : 3 ( 3 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of predicates : 2 ( 1 usr; 0 prp; 1-2 aty)
% Number of functors : 6 ( 6 usr; 2 con; 0-2 aty)
% Number of variables : 6 ( 6 !; 0 ?)
% SPC :
% Comments : The individual reference can be found in [Mat90] by looking for
% the name provided by [Urb08].
% : Translated by MPTP from the Mizar Mathematical Library 4.48.930.
% : These set theory axioms are used in encodings of problems in
% various domains, including ALG, CAT, GRP, LAT, SET, and TOP.
%------------------------------------------------------------------------------
fof(t1_arithm,axiom,
! [A] :
( v1_xcmplx_0(A)
=> k2_xcmplx_0(A,np__0) = A ) ).
fof(t2_arithm,axiom,
! [A] :
( v1_xcmplx_0(A)
=> k3_xcmplx_0(A,np__0) = np__0 ) ).
fof(t3_arithm,axiom,
! [A] :
( v1_xcmplx_0(A)
=> k3_xcmplx_0(np__1,A) = A ) ).
fof(t4_arithm,axiom,
! [A] :
( v1_xcmplx_0(A)
=> k6_xcmplx_0(A,np__0) = A ) ).
fof(t5_arithm,axiom,
! [A] :
( v1_xcmplx_0(A)
=> k7_xcmplx_0(np__0,A) = np__0 ) ).
fof(t6_arithm,axiom,
! [A] :
( v1_xcmplx_0(A)
=> k7_xcmplx_0(A,np__1) = A ) ).
%------------------------------------------------------------------------------