SET007 Axioms: SET007+35.ax
%------------------------------------------------------------------------------
% File : SET007+35 : TPTP v9.0.0. Released v3.4.0.
% Domain : Set Theory
% Axioms : Subsets of Complex Numbers
% Version : [Urb08] axioms.
% English :
% Refs : [Mat90] Matuszewski (1990), Formalized Mathematics
% : [Urb07] Urban (2007), MPTP 0.2: Design, Implementation, and In
% : [Urb08] Urban (2006), Email to G. Sutcliffe
% Source : [Urb08]
% Names : numbers [Urb08]
% Status : Satisfiable
% Syntax : Number of formulae : 45 ( 44 unt; 0 def)
% Number of atoms : 48 ( 17 equ)
% Maximal formula atoms : 4 ( 1 avg)
% Number of connectives : 17 ( 14 ~; 0 |; 2 &)
% ( 1 <=>; 0 =>; 0 <=; 0 <~>)
% Maximal formula depth : 6 ( 1 avg)
% Maximal term depth : 5 ( 1 avg)
% Number of predicates : 7 ( 5 usr; 1 prp; 0-2 aty)
% Number of functors : 20 ( 20 usr; 11 con; 0-2 aty)
% Number of variables : 2 ( 1 !; 1 ?)
% SPC :
% Comments : The individual reference can be found in [Mat90] by looking for
% the name provided by [Urb08].
% : Translated by MPTP from the Mizar Mathematical Library 4.48.930.
% : These set theory axioms are used in encodings of problems in
% various domains, including ALG, CAT, GRP, LAT, SET, and TOP.
%------------------------------------------------------------------------------
fof(fc1_numbers,axiom,
~ v1_xboole_0(k1_numbers) ).
fof(fc2_numbers,axiom,
~ v1_xboole_0(k2_numbers) ).
fof(fc3_numbers,axiom,
~ v1_xboole_0(k3_numbers) ).
fof(fc4_numbers,axiom,
~ v1_xboole_0(k4_numbers) ).
fof(d1_numbers,axiom,
k1_numbers = k4_xboole_0(k2_xboole_0(k2_arytm_2,k2_zfmisc_1(k1_tarski(np__0),k2_arytm_2)),k1_tarski(k4_tarski(np__0,np__0))) ).
fof(d3_numbers,axiom,
k3_numbers = k4_xboole_0(k2_xboole_0(k6_arytm_3,k2_zfmisc_1(k1_tarski(np__0),k6_arytm_3)),k1_tarski(k4_tarski(np__0,np__0))) ).
fof(d4_numbers,axiom,
k4_numbers = k4_xboole_0(k2_xboole_0(k5_ordinal2,k2_zfmisc_1(k1_tarski(np__0),k5_ordinal2)),k1_tarski(k4_tarski(np__0,np__0))) ).
fof(t1_numbers,axiom,
r2_xboole_0(k1_numbers,k2_numbers) ).
fof(t2_numbers,axiom,
r2_xboole_0(k3_numbers,k1_numbers) ).
fof(t3_numbers,axiom,
r2_xboole_0(k3_numbers,k2_numbers) ).
fof(t4_numbers,axiom,
r2_xboole_0(k4_numbers,k3_numbers) ).
fof(t5_numbers,axiom,
r2_xboole_0(k4_numbers,k1_numbers) ).
fof(t6_numbers,axiom,
r2_xboole_0(k4_numbers,k2_numbers) ).
fof(t7_numbers,axiom,
r2_xboole_0(k5_numbers,k4_numbers) ).
fof(t8_numbers,axiom,
r2_xboole_0(k5_numbers,k3_numbers) ).
fof(t9_numbers,axiom,
r2_xboole_0(k5_numbers,k1_numbers) ).
fof(t10_numbers,axiom,
r2_xboole_0(k5_numbers,k2_numbers) ).
fof(t11_numbers,axiom,
r1_tarski(k1_numbers,k2_numbers) ).
fof(t12_numbers,axiom,
r1_tarski(k3_numbers,k1_numbers) ).
fof(t13_numbers,axiom,
r1_tarski(k3_numbers,k2_numbers) ).
fof(t14_numbers,axiom,
r1_tarski(k4_numbers,k3_numbers) ).
fof(t15_numbers,axiom,
r1_tarski(k4_numbers,k1_numbers) ).
fof(t16_numbers,axiom,
r1_tarski(k4_numbers,k2_numbers) ).
fof(t17_numbers,axiom,
r1_tarski(k5_numbers,k4_numbers) ).
fof(t18_numbers,axiom,
r1_tarski(k5_numbers,k3_numbers) ).
fof(t19_numbers,axiom,
r1_tarski(k5_numbers,k1_numbers) ).
fof(t20_numbers,axiom,
r1_tarski(k5_numbers,k2_numbers) ).
fof(t21_numbers,axiom,
k1_numbers != k2_numbers ).
fof(t22_numbers,axiom,
k3_numbers != k1_numbers ).
fof(t23_numbers,axiom,
k3_numbers != k2_numbers ).
fof(t24_numbers,axiom,
k4_numbers != k3_numbers ).
fof(t25_numbers,axiom,
k4_numbers != k1_numbers ).
fof(t26_numbers,axiom,
k4_numbers != k2_numbers ).
fof(t27_numbers,axiom,
k5_numbers != k4_numbers ).
fof(t28_numbers,axiom,
k5_numbers != k3_numbers ).
fof(t29_numbers,axiom,
k5_numbers != k1_numbers ).
fof(t30_numbers,axiom,
k5_numbers != k2_numbers ).
fof(dt_k1_numbers,axiom,
$true ).
fof(dt_k2_numbers,axiom,
$true ).
fof(dt_k3_numbers,axiom,
$true ).
fof(dt_k4_numbers,axiom,
$true ).
fof(dt_k5_numbers,axiom,
m1_subset_1(k5_numbers,k1_zfmisc_1(k1_numbers)) ).
fof(redefinition_k5_numbers,axiom,
k5_numbers = k5_ordinal2 ).
fof(d2_numbers,axiom,
k2_numbers = k2_xboole_0(k4_xboole_0(k1_funct_2(k2_tarski(np__0,k13_arytm_3),k1_numbers),a_0_0_numbers),k1_numbers) ).
fof(fraenkel_a_0_0_numbers,axiom,
! [A] :
( r2_hidden(A,a_0_0_numbers)
<=> ? [B] :
( m1_subset_1(B,k1_funct_2(k2_tarski(np__0,k13_arytm_3),k1_numbers))
& A = B
& k1_funct_1(B,k13_arytm_3) = np__0 ) ) ).
%------------------------------------------------------------------------------