SET007 Axioms: SET007+32.ax
%------------------------------------------------------------------------------
% File : SET007+32 : TPTP v9.0.0. Released v3.4.0.
% Domain : Set Theory
% Axioms : Boolean Domains
% Version : [Urb08] axioms.
% English :
% Refs : [Mat90] Matuszewski (1990), Formalized Mathematics
% : [Urb07] Urban (2007), MPTP 0.2: Design, Implementation, and In
% : [Urb08] Urban (2006), Email to G. Sutcliffe
% Source : [Urb08]
% Names : finsub_1 [Urb08]
% Status : Satisfiable
% Syntax : Number of formulae : 59 ( 22 unt; 0 def)
% Number of atoms : 181 ( 13 equ)
% Maximal formula atoms : 6 ( 3 avg)
% Number of connectives : 147 ( 25 ~; 0 |; 69 &)
% ( 7 <=>; 46 =>; 0 <=; 0 <~>)
% Maximal formula depth : 9 ( 5 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 11 ( 9 usr; 1 prp; 0-2 aty)
% Number of functors : 12 ( 12 usr; 1 con; 0-3 aty)
% Number of variables : 96 ( 95 !; 1 ?)
% SPC :
% Comments : The individual reference can be found in [Mat90] by looking for
% the name provided by [Urb08].
% : Translated by MPTP from the Mizar Mathematical Library 4.48.930.
% : These set theory axioms are used in encodings of problems in
% various domains, including ALG, CAT, GRP, LAT, SET, and TOP.
%------------------------------------------------------------------------------
fof(cc1_finsub_1,axiom,
! [A] :
( v4_finsub_1(A)
=> ( v1_finsub_1(A)
& v3_finsub_1(A) ) ) ).
fof(cc2_finsub_1,axiom,
! [A] :
( ( v1_finsub_1(A)
& v3_finsub_1(A) )
=> v4_finsub_1(A) ) ).
fof(rc1_finsub_1,axiom,
? [A] :
( ~ v1_xboole_0(A)
& v1_finsub_1(A)
& v2_finsub_1(A)
& v3_finsub_1(A)
& v4_finsub_1(A) ) ).
fof(fc1_finsub_1,axiom,
! [A] :
( ~ v1_xboole_0(k1_zfmisc_1(A))
& v1_finsub_1(k1_zfmisc_1(A))
& v3_finsub_1(k1_zfmisc_1(A))
& v4_finsub_1(k1_zfmisc_1(A)) ) ).
fof(fc2_finsub_1,axiom,
! [A] :
( ~ v1_xboole_0(k5_finsub_1(A))
& v1_finsub_1(k5_finsub_1(A))
& v3_finsub_1(k5_finsub_1(A))
& v4_finsub_1(k5_finsub_1(A)) ) ).
fof(cc3_finsub_1,axiom,
! [A,B] :
( m1_subset_1(B,k5_finsub_1(A))
=> v1_finset_1(B) ) ).
fof(d1_finsub_1,axiom,
! [A] :
( v1_finsub_1(A)
<=> ! [B,C] :
( ( r2_hidden(B,A)
& r2_hidden(C,A) )
=> r2_hidden(k2_xboole_0(B,C),A) ) ) ).
fof(d2_finsub_1,axiom,
! [A] :
( v2_finsub_1(A)
<=> ! [B,C] :
( ( r2_hidden(B,A)
& r2_hidden(C,A) )
=> r2_hidden(k3_xboole_0(B,C),A) ) ) ).
fof(d3_finsub_1,axiom,
! [A] :
( v3_finsub_1(A)
<=> ! [B,C] :
( ( r2_hidden(B,A)
& r2_hidden(C,A) )
=> r2_hidden(k4_xboole_0(B,C),A) ) ) ).
fof(d4_finsub_1,axiom,
! [A] :
( v4_finsub_1(A)
<=> ( v1_finsub_1(A)
& v3_finsub_1(A) ) ) ).
fof(t1_finsub_1,axiom,
$true ).
fof(t2_finsub_1,axiom,
$true ).
fof(t3_finsub_1,axiom,
$true ).
fof(t4_finsub_1,axiom,
$true ).
fof(t5_finsub_1,axiom,
$true ).
fof(t6_finsub_1,axiom,
$true ).
fof(t7_finsub_1,axiom,
$true ).
fof(t8_finsub_1,axiom,
$true ).
fof(t9_finsub_1,axiom,
$true ).
fof(t10_finsub_1,axiom,
! [A] :
( v4_finsub_1(A)
<=> ! [B,C] :
( ( r2_hidden(B,A)
& r2_hidden(C,A) )
=> ( r2_hidden(k2_xboole_0(B,C),A)
& r2_hidden(k4_xboole_0(B,C),A) ) ) ) ).
fof(t11_finsub_1,axiom,
$true ).
fof(t12_finsub_1,axiom,
$true ).
fof(t13_finsub_1,axiom,
! [A,B,C] :
( ( ~ v1_xboole_0(C)
& v4_finsub_1(C) )
=> ( ( m1_subset_1(A,C)
& m1_subset_1(B,C) )
=> m1_subset_1(k3_xboole_0(A,B),C) ) ) ).
fof(t14_finsub_1,axiom,
! [A,B,C] :
( ( ~ v1_xboole_0(C)
& v4_finsub_1(C) )
=> ( ( m1_subset_1(A,C)
& m1_subset_1(B,C) )
=> m1_subset_1(k5_xboole_0(A,B),C) ) ) ).
fof(t15_finsub_1,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ( ! [B] :
( m1_subset_1(B,A)
=> ! [C] :
( m1_subset_1(C,A)
=> ( r2_hidden(k5_xboole_0(B,C),A)
& r2_hidden(k4_xboole_0(B,C),A) ) ) )
=> v4_finsub_1(A) ) ) ).
fof(t16_finsub_1,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ( ! [B] :
( m1_subset_1(B,A)
=> ! [C] :
( m1_subset_1(C,A)
=> ( r2_hidden(k5_xboole_0(B,C),A)
& r2_hidden(k3_xboole_0(B,C),A) ) ) )
=> v4_finsub_1(A) ) ) ).
fof(t17_finsub_1,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ( ! [B] :
( m1_subset_1(B,A)
=> ! [C] :
( m1_subset_1(C,A)
=> ( r2_hidden(k5_xboole_0(B,C),A)
& r2_hidden(k2_xboole_0(B,C),A) ) ) )
=> v4_finsub_1(A) ) ) ).
fof(t18_finsub_1,axiom,
! [A] :
( ( ~ v1_xboole_0(A)
& v4_finsub_1(A) )
=> r2_hidden(k1_xboole_0,A) ) ).
fof(t19_finsub_1,axiom,
$true ).
fof(t20_finsub_1,axiom,
! [A] : v4_finsub_1(k1_zfmisc_1(A)) ).
fof(t21_finsub_1,axiom,
! [A] :
( ( ~ v1_xboole_0(A)
& v4_finsub_1(A) )
=> ! [B] :
( ( ~ v1_xboole_0(B)
& v4_finsub_1(B) )
=> ( ~ v1_xboole_0(k3_xboole_0(A,B))
& v4_finsub_1(k3_xboole_0(A,B)) ) ) ) ).
fof(d5_finsub_1,axiom,
! [A,B] :
( v4_finsub_1(B)
=> ( B = k5_finsub_1(A)
<=> ! [C] :
( r2_hidden(C,B)
<=> ( r1_tarski(C,A)
& v1_finset_1(C) ) ) ) ) ).
fof(t22_finsub_1,axiom,
$true ).
fof(t23_finsub_1,axiom,
! [A,B] :
( r1_tarski(A,B)
=> r1_tarski(k5_finsub_1(A),k5_finsub_1(B)) ) ).
fof(t24_finsub_1,axiom,
! [A,B] : k5_finsub_1(k3_xboole_0(A,B)) = k3_xboole_0(k5_finsub_1(A),k5_finsub_1(B)) ).
fof(t25_finsub_1,axiom,
! [A,B] : r1_tarski(k2_xboole_0(k5_finsub_1(A),k5_finsub_1(B)),k5_finsub_1(k2_xboole_0(A,B))) ).
fof(t26_finsub_1,axiom,
! [A] : r1_tarski(k5_finsub_1(A),k1_zfmisc_1(A)) ).
fof(t27_finsub_1,axiom,
! [A] :
( v1_finset_1(A)
=> k5_finsub_1(A) = k1_zfmisc_1(A) ) ).
fof(t28_finsub_1,axiom,
k5_finsub_1(k1_xboole_0) = k1_tarski(k1_xboole_0) ).
fof(t29_finsub_1,axiom,
$true ).
fof(t30_finsub_1,axiom,
! [A,B] :
( m1_subset_1(B,k5_finsub_1(A))
=> v1_finset_1(B) ) ).
fof(t31_finsub_1,axiom,
$true ).
fof(t32_finsub_1,axiom,
! [A,B] :
( m1_subset_1(B,k5_finsub_1(A))
=> m1_subset_1(B,k1_zfmisc_1(A)) ) ).
fof(t33_finsub_1,axiom,
$true ).
fof(t34_finsub_1,axiom,
! [A,B] :
( m1_subset_1(B,k1_zfmisc_1(A))
=> ( v1_finset_1(A)
=> m1_subset_1(B,k5_finsub_1(A)) ) ) ).
fof(dt_k1_finsub_1,axiom,
! [A,B,C] :
( ( ~ v1_xboole_0(A)
& v4_finsub_1(A)
& m1_subset_1(B,A)
& m1_subset_1(C,A) )
=> m1_subset_1(k1_finsub_1(A,B,C),A) ) ).
fof(commutativity_k1_finsub_1,axiom,
! [A,B,C] :
( ( ~ v1_xboole_0(A)
& v4_finsub_1(A)
& m1_subset_1(B,A)
& m1_subset_1(C,A) )
=> k1_finsub_1(A,B,C) = k1_finsub_1(A,C,B) ) ).
fof(idempotence_k1_finsub_1,axiom,
! [A,B,C] :
( ( ~ v1_xboole_0(A)
& v4_finsub_1(A)
& m1_subset_1(B,A)
& m1_subset_1(C,A) )
=> k1_finsub_1(A,B,B) = B ) ).
fof(redefinition_k1_finsub_1,axiom,
! [A,B,C] :
( ( ~ v1_xboole_0(A)
& v4_finsub_1(A)
& m1_subset_1(B,A)
& m1_subset_1(C,A) )
=> k1_finsub_1(A,B,C) = k2_xboole_0(B,C) ) ).
fof(dt_k2_finsub_1,axiom,
! [A,B,C] :
( ( ~ v1_xboole_0(A)
& v4_finsub_1(A)
& m1_subset_1(B,A)
& m1_subset_1(C,A) )
=> m1_subset_1(k2_finsub_1(A,B,C),A) ) ).
fof(redefinition_k2_finsub_1,axiom,
! [A,B,C] :
( ( ~ v1_xboole_0(A)
& v4_finsub_1(A)
& m1_subset_1(B,A)
& m1_subset_1(C,A) )
=> k2_finsub_1(A,B,C) = k4_xboole_0(B,C) ) ).
fof(dt_k3_finsub_1,axiom,
! [A,B,C] :
( ( ~ v1_xboole_0(A)
& v4_finsub_1(A)
& m1_subset_1(B,A)
& m1_subset_1(C,A) )
=> m1_subset_1(k3_finsub_1(A,B,C),A) ) ).
fof(commutativity_k3_finsub_1,axiom,
! [A,B,C] :
( ( ~ v1_xboole_0(A)
& v4_finsub_1(A)
& m1_subset_1(B,A)
& m1_subset_1(C,A) )
=> k3_finsub_1(A,B,C) = k3_finsub_1(A,C,B) ) ).
fof(idempotence_k3_finsub_1,axiom,
! [A,B,C] :
( ( ~ v1_xboole_0(A)
& v4_finsub_1(A)
& m1_subset_1(B,A)
& m1_subset_1(C,A) )
=> k3_finsub_1(A,B,B) = B ) ).
fof(redefinition_k3_finsub_1,axiom,
! [A,B,C] :
( ( ~ v1_xboole_0(A)
& v4_finsub_1(A)
& m1_subset_1(B,A)
& m1_subset_1(C,A) )
=> k3_finsub_1(A,B,C) = k3_xboole_0(B,C) ) ).
fof(dt_k4_finsub_1,axiom,
! [A,B,C] :
( ( ~ v1_xboole_0(A)
& v4_finsub_1(A)
& m1_subset_1(B,A)
& m1_subset_1(C,A) )
=> m1_subset_1(k4_finsub_1(A,B,C),A) ) ).
fof(commutativity_k4_finsub_1,axiom,
! [A,B,C] :
( ( ~ v1_xboole_0(A)
& v4_finsub_1(A)
& m1_subset_1(B,A)
& m1_subset_1(C,A) )
=> k4_finsub_1(A,B,C) = k4_finsub_1(A,C,B) ) ).
fof(redefinition_k4_finsub_1,axiom,
! [A,B,C] :
( ( ~ v1_xboole_0(A)
& v4_finsub_1(A)
& m1_subset_1(B,A)
& m1_subset_1(C,A) )
=> k4_finsub_1(A,B,C) = k5_xboole_0(B,C) ) ).
fof(dt_k5_finsub_1,axiom,
! [A] : v4_finsub_1(k5_finsub_1(A)) ).
%------------------------------------------------------------------------------