SET007 Axioms: SET007+318.ax
%------------------------------------------------------------------------------
% File : SET007+318 : TPTP v9.0.0. Released v3.4.0.
% Domain : Set Theory
% Axioms : Heine-Borel's Covering Theorem
% Version : [Urb08] axioms.
% English :
% Refs : [Mat90] Matuszewski (1990), Formalized Mathematics
% : [Urb07] Urban (2007), MPTP 0.2: Design, Implementation, and In
% : [Urb08] Urban (2006), Email to G. Sutcliffe
% Source : [Urb08]
% Names : heine [Urb08]
% Status : Satisfiable
% Syntax : Number of formulae : 13 ( 2 unt; 0 def)
% Number of atoms : 61 ( 6 equ)
% Maximal formula atoms : 10 ( 4 avg)
% Number of connectives : 51 ( 3 ~; 0 |; 18 &)
% ( 1 <=>; 29 =>; 0 <=; 0 <~>)
% Maximal formula depth : 13 ( 6 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 18 ( 16 usr; 1 prp; 0-3 aty)
% Number of functors : 20 ( 20 usr; 6 con; 0-4 aty)
% Number of variables : 24 ( 24 !; 0 ?)
% SPC :
% Comments : The individual reference can be found in [Mat90] by looking for
% the name provided by [Urb08].
% : Translated by MPTP from the Mizar Mathematical Library 4.48.930.
% : These set theory axioms are used in encodings of problems in
% various domains, including ALG, CAT, GRP, LAT, SET, and TOP.
%------------------------------------------------------------------------------
fof(t1_heine,axiom,
! [A] :
( v1_xreal_0(A)
=> ! [B] :
( v1_xreal_0(B)
=> ! [C] :
( m1_topmetr(C,k8_metric_1)
=> ! [D] :
( m1_subset_1(D,u1_struct_0(C))
=> ! [E] :
( m1_subset_1(E,u1_struct_0(C))
=> ( ( A = D
& B = E )
=> k4_metric_1(C,D,E) = k18_complex1(k6_xcmplx_0(A,B)) ) ) ) ) ) ) ).
fof(t2_heine,axiom,
! [A] :
( v1_xreal_0(A)
=> ! [B] :
( v1_xreal_0(B)
=> ! [C] :
( v1_xreal_0(C)
=> ( ( r1_xreal_0(A,B)
& r1_xreal_0(B,C) )
=> k4_subset_1(k1_numbers,k1_rcomp_1(A,B),k1_rcomp_1(B,C)) = k1_rcomp_1(A,C) ) ) ) ) ).
fof(t3_heine,axiom,
$true ).
fof(t4_heine,axiom,
$true ).
fof(t5_heine,axiom,
! [A] :
( v1_xreal_0(A)
=> ! [B] :
( m2_subset_1(B,k1_numbers,k5_numbers)
=> ~ ( ~ r1_xreal_0(A,np__0)
& r1_xreal_0(k2_newton(A,B),np__0) ) ) ) ).
fof(t6_heine,axiom,
! [A] :
( m2_subset_1(A,k1_numbers,k5_numbers)
=> ! [B] :
( ( v1_funct_1(B)
& v1_funct_2(B,k5_numbers,k1_numbers)
& m2_relset_1(B,k5_numbers,k1_numbers) )
=> ( ( v1_seqm_3(B)
& r1_tarski(k2_relat_1(B),k5_numbers) )
=> r1_xreal_0(A,k2_seq_1(k5_numbers,k1_numbers,B,A)) ) ) ) ).
fof(d1_heine,axiom,
! [A] :
( ( v1_funct_1(A)
& v1_funct_2(A,k5_numbers,k1_numbers)
& m2_relset_1(A,k5_numbers,k1_numbers) )
=> ! [B] :
( m2_subset_1(B,k1_numbers,k5_numbers)
=> ! [C] :
( ( v1_funct_1(C)
& v1_funct_2(C,k5_numbers,k1_numbers)
& m2_relset_1(C,k5_numbers,k1_numbers) )
=> ( C = k1_heine(A,B)
<=> ! [D] :
( m2_subset_1(D,k1_numbers,k5_numbers)
=> k2_seq_1(k5_numbers,k1_numbers,C,D) = k4_power(B,k2_seq_1(k5_numbers,k1_numbers,A,D)) ) ) ) ) ) ).
fof(t7_heine,axiom,
! [A] :
( m2_subset_1(A,k1_numbers,k5_numbers)
=> r1_xreal_0(k1_nat_1(A,np__1),k3_newton(np__2,A)) ) ).
fof(t8_heine,axiom,
! [A] :
( m2_subset_1(A,k1_numbers,k5_numbers)
=> ~ r1_xreal_0(k3_newton(np__2,A),A) ) ).
fof(t9_heine,axiom,
! [A] :
( ( v1_funct_1(A)
& v1_funct_2(A,k5_numbers,k1_numbers)
& m2_relset_1(A,k5_numbers,k1_numbers) )
=> ( v1_limfunc1(A)
=> v1_limfunc1(k1_heine(A,np__2)) ) ) ).
fof(t10_heine,axiom,
! [A] :
( ( v2_pre_topc(A)
& l1_pre_topc(A) )
=> ( v1_finset_1(u1_struct_0(A))
=> v2_compts_1(A) ) ) ).
fof(t11_heine,axiom,
! [A] :
( v1_xreal_0(A)
=> ! [B] :
( v1_xreal_0(B)
=> ( r1_xreal_0(A,B)
=> v2_compts_1(k4_topmetr(A,B)) ) ) ) ).
fof(dt_k1_heine,axiom,
! [A,B] :
( ( v1_funct_1(A)
& v1_funct_2(A,k5_numbers,k1_numbers)
& m1_relset_1(A,k5_numbers,k1_numbers)
& m1_subset_1(B,k5_numbers) )
=> ( v1_funct_1(k1_heine(A,B))
& v1_funct_2(k1_heine(A,B),k5_numbers,k1_numbers)
& m2_relset_1(k1_heine(A,B),k5_numbers,k1_numbers) ) ) ).
%------------------------------------------------------------------------------