SET007 Axioms: SET007+304.ax
%------------------------------------------------------------------------------
% File : SET007+304 : TPTP v9.0.0. Released v3.4.0.
% Domain : Set Theory
% Axioms : Fix Point Theorem for Compact Spaces
% Version : [Urb08] axioms.
% English :
% Refs : [Mat90] Matuszewski (1990), Formalized Mathematics
% : [Urb07] Urban (2007), MPTP 0.2: Design, Implementation, and In
% : [Urb08] Urban (2006), Email to G. Sutcliffe
% Source : [Urb08]
% Names : ali2 [Urb08]
% Status : Satisfiable
% Syntax : Number of formulae : 5 ( 1 unt; 0 def)
% Number of atoms : 47 ( 3 equ)
% Maximal formula atoms : 16 ( 9 avg)
% Number of connectives : 50 ( 8 ~; 0 |; 29 &)
% ( 1 <=>; 12 =>; 0 <=; 0 <~>)
% Maximal formula depth : 14 ( 9 avg)
% Maximal term depth : 4 ( 1 avg)
% Number of predicates : 15 ( 13 usr; 1 prp; 0-3 aty)
% Number of functors : 8 ( 8 usr; 3 con; 0-4 aty)
% Number of variables : 13 ( 11 !; 2 ?)
% SPC :
% Comments : The individual reference can be found in [Mat90] by looking for
% the name provided by [Urb08].
% : Translated by MPTP from the Mizar Mathematical Library 4.48.930.
% : These set theory axioms are used in encodings of problems in
% various domains, including ALG, CAT, GRP, LAT, SET, and TOP.
%------------------------------------------------------------------------------
fof(d1_ali2,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& v6_metric_1(A)
& v7_metric_1(A)
& v8_metric_1(A)
& v9_metric_1(A)
& l1_metric_1(A) )
=> ! [B] :
( ( v1_funct_1(B)
& v1_funct_2(B,u1_struct_0(A),u1_struct_0(A))
& m2_relset_1(B,u1_struct_0(A),u1_struct_0(A)) )
=> ( m1_ali2(B,A)
<=> ? [C] :
( m1_subset_1(C,k1_numbers)
& ~ r1_xreal_0(C,np__0)
& ~ r1_xreal_0(np__1,C)
& ! [D] :
( m1_subset_1(D,u1_struct_0(A))
=> ! [E] :
( m1_subset_1(E,u1_struct_0(A))
=> r1_xreal_0(k4_metric_1(A,k8_funct_2(u1_struct_0(A),u1_struct_0(A),B,D),k8_funct_2(u1_struct_0(A),u1_struct_0(A),B,E)),k4_real_1(C,k4_metric_1(A,D,E))) ) ) ) ) ) ) ).
fof(t1_ali2,axiom,
$true ).
fof(t2_ali2,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& v6_metric_1(A)
& v7_metric_1(A)
& v8_metric_1(A)
& v9_metric_1(A)
& l1_metric_1(A) )
=> ! [B] :
( m1_ali2(B,A)
=> ~ ( v2_compts_1(k5_pcomps_1(A))
& ! [C] :
( m1_subset_1(C,u1_struct_0(A))
=> ~ ( k8_funct_2(u1_struct_0(A),u1_struct_0(A),B,C) = C
& ! [D] :
( m1_subset_1(D,u1_struct_0(A))
=> ( k8_funct_2(u1_struct_0(A),u1_struct_0(A),B,D) = D
=> D = C ) ) ) ) ) ) ) ).
fof(dt_m1_ali2,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& v6_metric_1(A)
& v7_metric_1(A)
& v8_metric_1(A)
& v9_metric_1(A)
& l1_metric_1(A) )
=> ! [B] :
( m1_ali2(B,A)
=> ( v1_funct_1(B)
& v1_funct_2(B,u1_struct_0(A),u1_struct_0(A))
& m2_relset_1(B,u1_struct_0(A),u1_struct_0(A)) ) ) ) ).
fof(existence_m1_ali2,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& v6_metric_1(A)
& v7_metric_1(A)
& v8_metric_1(A)
& v9_metric_1(A)
& l1_metric_1(A) )
=> ? [B] : m1_ali2(B,A) ) ).
%------------------------------------------------------------------------------