SET007 Axioms: SET007+3.ax


%------------------------------------------------------------------------------
% File     : SET007+3 : TPTP v9.0.0. Released v3.4.0.
% Domain   : Set Theory
% Axioms   : Boolean Properties of Sets - Requirements
% Version  : [Urb08] axioms.
% English  :

% Refs     : [Mat90] Matuszewski (1990), Formalized Mathematics
%          : [Urb07] Urban (2007), MPTP 0.2: Design, Implementation, and In
%          : [Urb08] Urban (2006), Email to G. Sutcliffe
% Source   : [Urb08]
% Names    : boole [Urb08]

% Status   : Satisfiable
% Syntax   : Number of formulae    :    8 (   5 unt;   0 def)
%            Number of atoms       :   12 (   7 equ)
%            Maximal formula atoms :    3 (   1 avg)
%            Number of connectives :    7 (   3   ~;   0   |;   3   &)
%                                         (   0 <=>;   1  =>;   0  <=;   0 <~>)
%            Maximal formula depth :    7 (   3 avg)
%            Maximal term depth    :    2 (   1 avg)
%            Number of predicates  :    3 (   2 usr;   0 prp; 1-2 aty)
%            Number of functors    :    5 (   5 usr;   1 con; 0-2 aty)
%            Number of variables   :   10 (  10   !;   0   ?)
% SPC      : 

% Comments : The individual reference can be found in [Mat90] by looking for
%            the name provided by [Urb08].
%          : Translated by MPTP from the Mizar Mathematical Library 4.48.930.
%          : These set theory axioms are used in encodings of problems in
%            various domains, including ALG, CAT, GRP, LAT, SET, and TOP.
%------------------------------------------------------------------------------
fof(t1_boole,axiom,
    ! [A] : k2_xboole_0(A,k1_xboole_0) = A ).

fof(t2_boole,axiom,
    ! [A] : k3_xboole_0(A,k1_xboole_0) = k1_xboole_0 ).

fof(t3_boole,axiom,
    ! [A] : k4_xboole_0(A,k1_xboole_0) = A ).

fof(t4_boole,axiom,
    ! [A] : k4_xboole_0(k1_xboole_0,A) = k1_xboole_0 ).

fof(t5_boole,axiom,
    ! [A] : k5_xboole_0(A,k1_xboole_0) = A ).

fof(t6_boole,axiom,
    ! [A] :
      ( v1_xboole_0(A)
     => A = k1_xboole_0 ) ).

fof(t7_boole,axiom,
    ! [A,B] :
      ~ ( r2_hidden(A,B)
        & v1_xboole_0(B) ) ).

fof(t8_boole,axiom,
    ! [A,B] :
      ~ ( v1_xboole_0(A)
        & A != B
        & v1_xboole_0(B) ) ).

%------------------------------------------------------------------------------