SET007 Axioms: SET007+3.ax
%------------------------------------------------------------------------------
% File : SET007+3 : TPTP v9.0.0. Released v3.4.0.
% Domain : Set Theory
% Axioms : Boolean Properties of Sets - Requirements
% Version : [Urb08] axioms.
% English :
% Refs : [Mat90] Matuszewski (1990), Formalized Mathematics
% : [Urb07] Urban (2007), MPTP 0.2: Design, Implementation, and In
% : [Urb08] Urban (2006), Email to G. Sutcliffe
% Source : [Urb08]
% Names : boole [Urb08]
% Status : Satisfiable
% Syntax : Number of formulae : 8 ( 5 unt; 0 def)
% Number of atoms : 12 ( 7 equ)
% Maximal formula atoms : 3 ( 1 avg)
% Number of connectives : 7 ( 3 ~; 0 |; 3 &)
% ( 0 <=>; 1 =>; 0 <=; 0 <~>)
% Maximal formula depth : 7 ( 3 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of predicates : 3 ( 2 usr; 0 prp; 1-2 aty)
% Number of functors : 5 ( 5 usr; 1 con; 0-2 aty)
% Number of variables : 10 ( 10 !; 0 ?)
% SPC :
% Comments : The individual reference can be found in [Mat90] by looking for
% the name provided by [Urb08].
% : Translated by MPTP from the Mizar Mathematical Library 4.48.930.
% : These set theory axioms are used in encodings of problems in
% various domains, including ALG, CAT, GRP, LAT, SET, and TOP.
%------------------------------------------------------------------------------
fof(t1_boole,axiom,
! [A] : k2_xboole_0(A,k1_xboole_0) = A ).
fof(t2_boole,axiom,
! [A] : k3_xboole_0(A,k1_xboole_0) = k1_xboole_0 ).
fof(t3_boole,axiom,
! [A] : k4_xboole_0(A,k1_xboole_0) = A ).
fof(t4_boole,axiom,
! [A] : k4_xboole_0(k1_xboole_0,A) = k1_xboole_0 ).
fof(t5_boole,axiom,
! [A] : k5_xboole_0(A,k1_xboole_0) = A ).
fof(t6_boole,axiom,
! [A] :
( v1_xboole_0(A)
=> A = k1_xboole_0 ) ).
fof(t7_boole,axiom,
! [A,B] :
~ ( r2_hidden(A,B)
& v1_xboole_0(B) ) ).
fof(t8_boole,axiom,
! [A,B] :
~ ( v1_xboole_0(A)
& A != B
& v1_xboole_0(B) ) ).
%------------------------------------------------------------------------------