SET007 Axioms: SET007+281.ax
%------------------------------------------------------------------------------
% File : SET007+281 : TPTP v9.0.0. Released v3.4.0.
% Domain : Set Theory
% Axioms : Linear Independence in Right Module over Domain
% Version : [Urb08] axioms.
% English :
% Refs : [Mat90] Matuszewski (1990), Formalized Mathematics
% : [Urb07] Urban (2007), MPTP 0.2: Design, Implementation, and In
% : [Urb08] Urban (2006), Email to G. Sutcliffe
% Source : [Urb08]
% Names : rmod_5 [Urb08]
% Status : Satisfiable
% Syntax : Number of formulae : 22 ( 3 unt; 0 def)
% Number of atoms : 441 ( 24 equ)
% Maximal formula atoms : 26 ( 20 avg)
% Number of connectives : 480 ( 61 ~; 3 |; 343 &)
% ( 4 <=>; 69 =>; 0 <=; 0 <~>)
% Maximal formula depth : 26 ( 13 avg)
% Maximal term depth : 4 ( 1 avg)
% Number of predicates : 25 ( 23 usr; 1 prp; 0-4 aty)
% Number of functors : 17 ( 17 usr; 1 con; 0-4 aty)
% Number of variables : 69 ( 67 !; 2 ?)
% SPC :
% Comments : The individual reference can be found in [Mat90] by looking for
% the name provided by [Urb08].
% : Translated by MPTP from the Mizar Mathematical Library 4.48.930.
% : These set theory axioms are used in encodings of problems in
% various domains, including ALG, CAT, GRP, LAT, SET, and TOP.
%------------------------------------------------------------------------------
fof(d1_rmod_5,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& v3_rlvect_1(A)
& v4_rlvect_1(A)
& v5_rlvect_1(A)
& v6_rlvect_1(A)
& v4_group_1(A)
& v6_vectsp_1(A)
& v7_vectsp_1(A)
& v8_vectsp_1(A)
& l3_vectsp_1(A) )
=> ! [B] :
( ( ~ v3_struct_0(B)
& v3_rlvect_1(B)
& v4_rlvect_1(B)
& v5_rlvect_1(B)
& v6_rlvect_1(B)
& v5_vectsp_2(B,A)
& l1_vectsp_2(B,A) )
=> ! [C] :
( m1_subset_1(C,k1_zfmisc_1(u1_struct_0(B)))
=> ( v1_rmod_5(C,A,B)
<=> ! [D] :
( m2_rmod_4(D,A,B,C)
=> ( k5_rmod_4(A,B,D) = k1_rlvect_1(B)
=> k2_rmod_4(A,B,D) = k1_xboole_0 ) ) ) ) ) ) ).
fof(t1_rmod_5,axiom,
$true ).
fof(t2_rmod_5,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& v3_rlvect_1(A)
& v4_rlvect_1(A)
& v5_rlvect_1(A)
& v6_rlvect_1(A)
& v4_group_1(A)
& v6_vectsp_1(A)
& v7_vectsp_1(A)
& v8_vectsp_1(A)
& l3_vectsp_1(A) )
=> ! [B] :
( ( ~ v3_struct_0(B)
& v3_rlvect_1(B)
& v4_rlvect_1(B)
& v5_rlvect_1(B)
& v6_rlvect_1(B)
& v5_vectsp_2(B,A)
& l1_vectsp_2(B,A) )
=> ! [C] :
( m1_subset_1(C,k1_zfmisc_1(u1_struct_0(B)))
=> ! [D] :
( m1_subset_1(D,k1_zfmisc_1(u1_struct_0(B)))
=> ( ( r1_tarski(C,D)
& v1_rmod_5(D,A,B) )
=> v1_rmod_5(C,A,B) ) ) ) ) ) ).
fof(t3_rmod_5,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& v3_rlvect_1(A)
& v4_rlvect_1(A)
& v5_rlvect_1(A)
& v6_rlvect_1(A)
& v4_group_1(A)
& v6_vectsp_1(A)
& v7_vectsp_1(A)
& v8_vectsp_1(A)
& l3_vectsp_1(A) )
=> ! [B] :
( ( ~ v3_struct_0(B)
& v3_rlvect_1(B)
& v4_rlvect_1(B)
& v5_rlvect_1(B)
& v6_rlvect_1(B)
& v5_vectsp_2(B,A)
& l1_vectsp_2(B,A) )
=> ! [C] :
( m1_subset_1(C,k1_zfmisc_1(u1_struct_0(B)))
=> ~ ( k1_rlvect_1(A) != k2_group_1(A)
& v1_rmod_5(C,A,B)
& r2_hidden(k1_rlvect_1(B),C) ) ) ) ) ).
fof(t4_rmod_5,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& v3_rlvect_1(A)
& v4_rlvect_1(A)
& v5_rlvect_1(A)
& v6_rlvect_1(A)
& v4_group_1(A)
& v6_vectsp_1(A)
& v7_vectsp_1(A)
& v8_vectsp_1(A)
& l3_vectsp_1(A) )
=> ! [B] :
( ( ~ v3_struct_0(B)
& v3_rlvect_1(B)
& v4_rlvect_1(B)
& v5_rlvect_1(B)
& v6_rlvect_1(B)
& v5_vectsp_2(B,A)
& l1_vectsp_2(B,A) )
=> v1_rmod_5(k1_subset_1(u1_struct_0(B)),A,B) ) ) ).
fof(t5_rmod_5,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& v3_rlvect_1(A)
& v4_rlvect_1(A)
& v5_rlvect_1(A)
& v6_rlvect_1(A)
& v4_group_1(A)
& v6_vectsp_1(A)
& v7_vectsp_1(A)
& v8_vectsp_1(A)
& l3_vectsp_1(A) )
=> ! [B] :
( ( ~ v3_struct_0(B)
& v3_rlvect_1(B)
& v4_rlvect_1(B)
& v5_rlvect_1(B)
& v6_rlvect_1(B)
& v5_vectsp_2(B,A)
& l1_vectsp_2(B,A) )
=> ! [C] :
( m1_subset_1(C,u1_struct_0(B))
=> ! [D] :
( m1_subset_1(D,u1_struct_0(B))
=> ( v1_rmod_5(k8_rlvect_2(B,C,D),A,B)
=> ( k1_rlvect_1(A) = k2_group_1(A)
| ( C != k1_rlvect_1(B)
& D != k1_rlvect_1(B) ) ) ) ) ) ) ) ).
fof(t6_rmod_5,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& v3_rlvect_1(A)
& v4_rlvect_1(A)
& v5_rlvect_1(A)
& v6_rlvect_1(A)
& v4_group_1(A)
& v6_vectsp_1(A)
& v7_vectsp_1(A)
& v8_vectsp_1(A)
& l3_vectsp_1(A) )
=> ! [B] :
( ( ~ v3_struct_0(B)
& v3_rlvect_1(B)
& v4_rlvect_1(B)
& v5_rlvect_1(B)
& v6_rlvect_1(B)
& v5_vectsp_2(B,A)
& l1_vectsp_2(B,A) )
=> ! [C] :
( m1_subset_1(C,u1_struct_0(B))
=> ( k1_rlvect_1(A) != k2_group_1(A)
=> ( ~ v1_rmod_5(k8_rlvect_2(B,C,k1_rlvect_1(B)),A,B)
& ~ v1_rmod_5(k8_rlvect_2(B,k1_rlvect_1(B),C),A,B) ) ) ) ) ) ).
fof(t7_rmod_5,axiom,
$true ).
fof(t8_rmod_5,axiom,
$true ).
fof(t9_rmod_5,axiom,
! [A,B] :
( ( ~ v3_struct_0(B)
& v3_rlvect_1(B)
& v4_rlvect_1(B)
& v5_rlvect_1(B)
& v6_rlvect_1(B)
& v4_group_1(B)
& v7_group_1(B)
& v6_vectsp_1(B)
& v7_vectsp_1(B)
& v8_vectsp_1(B)
& ~ v10_vectsp_1(B)
& v2_vectsp_2(B)
& l3_vectsp_1(B) )
=> ! [C] :
( ( ~ v3_struct_0(C)
& v3_rlvect_1(C)
& v4_rlvect_1(C)
& v5_rlvect_1(C)
& v6_rlvect_1(C)
& v5_vectsp_2(C,B)
& l1_vectsp_2(C,B) )
=> ! [D] :
( m1_subset_1(D,k1_zfmisc_1(u1_struct_0(C)))
=> ( r1_rlvect_1(k1_rmod_5(B,C,D),A)
<=> ? [E] :
( m2_rmod_4(E,B,C,D)
& A = k5_rmod_4(B,C,E) ) ) ) ) ) ).
fof(t10_rmod_5,axiom,
! [A,B] :
( ( ~ v3_struct_0(B)
& v3_rlvect_1(B)
& v4_rlvect_1(B)
& v5_rlvect_1(B)
& v6_rlvect_1(B)
& v4_group_1(B)
& v7_group_1(B)
& v6_vectsp_1(B)
& v7_vectsp_1(B)
& v8_vectsp_1(B)
& ~ v10_vectsp_1(B)
& v2_vectsp_2(B)
& l3_vectsp_1(B) )
=> ! [C] :
( ( ~ v3_struct_0(C)
& v3_rlvect_1(C)
& v4_rlvect_1(C)
& v5_rlvect_1(C)
& v6_rlvect_1(C)
& v5_vectsp_2(C,B)
& l1_vectsp_2(C,B) )
=> ! [D] :
( m1_subset_1(D,k1_zfmisc_1(u1_struct_0(C)))
=> ( r2_hidden(A,D)
=> r1_rlvect_1(k1_rmod_5(B,C,D),A) ) ) ) ) ).
fof(t11_rmod_5,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& v3_rlvect_1(A)
& v4_rlvect_1(A)
& v5_rlvect_1(A)
& v6_rlvect_1(A)
& v4_group_1(A)
& v7_group_1(A)
& v6_vectsp_1(A)
& v7_vectsp_1(A)
& v8_vectsp_1(A)
& ~ v10_vectsp_1(A)
& v2_vectsp_2(A)
& l3_vectsp_1(A) )
=> ! [B] :
( ( ~ v3_struct_0(B)
& v3_rlvect_1(B)
& v4_rlvect_1(B)
& v5_rlvect_1(B)
& v6_rlvect_1(B)
& v5_vectsp_2(B,A)
& l1_vectsp_2(B,A) )
=> k1_rmod_5(A,B,k1_subset_1(u1_struct_0(B))) = k1_rmod_2(A,B) ) ) ).
fof(t12_rmod_5,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& v3_rlvect_1(A)
& v4_rlvect_1(A)
& v5_rlvect_1(A)
& v6_rlvect_1(A)
& v4_group_1(A)
& v7_group_1(A)
& v6_vectsp_1(A)
& v7_vectsp_1(A)
& v8_vectsp_1(A)
& ~ v10_vectsp_1(A)
& v2_vectsp_2(A)
& l3_vectsp_1(A) )
=> ! [B] :
( ( ~ v3_struct_0(B)
& v3_rlvect_1(B)
& v4_rlvect_1(B)
& v5_rlvect_1(B)
& v6_rlvect_1(B)
& v5_vectsp_2(B,A)
& l1_vectsp_2(B,A) )
=> ! [C] :
( m1_subset_1(C,k1_zfmisc_1(u1_struct_0(B)))
=> ~ ( k1_rmod_5(A,B,C) = k1_rmod_2(A,B)
& C != k1_xboole_0
& C != k7_rlvect_2(B,k1_rlvect_1(B)) ) ) ) ) ).
fof(t13_rmod_5,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& v3_rlvect_1(A)
& v4_rlvect_1(A)
& v5_rlvect_1(A)
& v6_rlvect_1(A)
& v4_group_1(A)
& v7_group_1(A)
& v6_vectsp_1(A)
& v7_vectsp_1(A)
& v8_vectsp_1(A)
& ~ v10_vectsp_1(A)
& v2_vectsp_2(A)
& l3_vectsp_1(A) )
=> ! [B] :
( ( ~ v3_struct_0(B)
& v3_rlvect_1(B)
& v4_rlvect_1(B)
& v5_rlvect_1(B)
& v6_rlvect_1(B)
& v5_vectsp_2(B,A)
& l1_vectsp_2(B,A) )
=> ! [C] :
( m1_subset_1(C,k1_zfmisc_1(u1_struct_0(B)))
=> ! [D] :
( ( v3_vectsp_2(D,A)
& m1_rmod_2(D,A,B) )
=> ( C = u1_struct_0(D)
=> ( k1_rlvect_1(A) = k2_group_1(A)
| k1_rmod_5(A,B,C) = D ) ) ) ) ) ) ).
fof(t14_rmod_5,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& v3_rlvect_1(A)
& v4_rlvect_1(A)
& v5_rlvect_1(A)
& v6_rlvect_1(A)
& v4_group_1(A)
& v7_group_1(A)
& v6_vectsp_1(A)
& v7_vectsp_1(A)
& v8_vectsp_1(A)
& ~ v10_vectsp_1(A)
& v2_vectsp_2(A)
& l3_vectsp_1(A) )
=> ! [B] :
( ( ~ v3_struct_0(B)
& v3_rlvect_1(B)
& v4_rlvect_1(B)
& v5_rlvect_1(B)
& v6_rlvect_1(B)
& v3_vectsp_2(B,A)
& v5_vectsp_2(B,A)
& l1_vectsp_2(B,A) )
=> ! [C] :
( m1_subset_1(C,k1_zfmisc_1(u1_struct_0(B)))
=> ( C = u1_struct_0(B)
=> ( k1_rlvect_1(A) = k2_group_1(A)
| k1_rmod_5(A,B,C) = B ) ) ) ) ) ).
fof(t15_rmod_5,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& v3_rlvect_1(A)
& v4_rlvect_1(A)
& v5_rlvect_1(A)
& v6_rlvect_1(A)
& v4_group_1(A)
& v7_group_1(A)
& v6_vectsp_1(A)
& v7_vectsp_1(A)
& v8_vectsp_1(A)
& ~ v10_vectsp_1(A)
& v2_vectsp_2(A)
& l3_vectsp_1(A) )
=> ! [B] :
( ( ~ v3_struct_0(B)
& v3_rlvect_1(B)
& v4_rlvect_1(B)
& v5_rlvect_1(B)
& v6_rlvect_1(B)
& v5_vectsp_2(B,A)
& l1_vectsp_2(B,A) )
=> ! [C] :
( m1_subset_1(C,k1_zfmisc_1(u1_struct_0(B)))
=> ! [D] :
( m1_subset_1(D,k1_zfmisc_1(u1_struct_0(B)))
=> ( r1_tarski(C,D)
=> m1_rmod_2(k1_rmod_5(A,B,C),A,k1_rmod_5(A,B,D)) ) ) ) ) ) ).
fof(t16_rmod_5,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& v3_rlvect_1(A)
& v4_rlvect_1(A)
& v5_rlvect_1(A)
& v6_rlvect_1(A)
& v4_group_1(A)
& v7_group_1(A)
& v6_vectsp_1(A)
& v7_vectsp_1(A)
& v8_vectsp_1(A)
& ~ v10_vectsp_1(A)
& v2_vectsp_2(A)
& l3_vectsp_1(A) )
=> ! [B] :
( ( ~ v3_struct_0(B)
& v3_rlvect_1(B)
& v4_rlvect_1(B)
& v5_rlvect_1(B)
& v6_rlvect_1(B)
& v3_vectsp_2(B,A)
& v5_vectsp_2(B,A)
& l1_vectsp_2(B,A) )
=> ! [C] :
( m1_subset_1(C,k1_zfmisc_1(u1_struct_0(B)))
=> ! [D] :
( m1_subset_1(D,k1_zfmisc_1(u1_struct_0(B)))
=> ( ( k1_rmod_5(A,B,C) = B
& r1_tarski(C,D) )
=> k1_rmod_5(A,B,D) = B ) ) ) ) ) ).
fof(t17_rmod_5,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& v3_rlvect_1(A)
& v4_rlvect_1(A)
& v5_rlvect_1(A)
& v6_rlvect_1(A)
& v4_group_1(A)
& v7_group_1(A)
& v6_vectsp_1(A)
& v7_vectsp_1(A)
& v8_vectsp_1(A)
& ~ v10_vectsp_1(A)
& v2_vectsp_2(A)
& l3_vectsp_1(A) )
=> ! [B] :
( ( ~ v3_struct_0(B)
& v3_rlvect_1(B)
& v4_rlvect_1(B)
& v5_rlvect_1(B)
& v6_rlvect_1(B)
& v5_vectsp_2(B,A)
& l1_vectsp_2(B,A) )
=> ! [C] :
( m1_subset_1(C,k1_zfmisc_1(u1_struct_0(B)))
=> ! [D] :
( m1_subset_1(D,k1_zfmisc_1(u1_struct_0(B)))
=> k1_rmod_5(A,B,k4_subset_1(u1_struct_0(B),C,D)) = k1_rmod_3(A,B,k1_rmod_5(A,B,C),k1_rmod_5(A,B,D)) ) ) ) ) ).
fof(t18_rmod_5,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& v3_rlvect_1(A)
& v4_rlvect_1(A)
& v5_rlvect_1(A)
& v6_rlvect_1(A)
& v4_group_1(A)
& v7_group_1(A)
& v6_vectsp_1(A)
& v7_vectsp_1(A)
& v8_vectsp_1(A)
& ~ v10_vectsp_1(A)
& v2_vectsp_2(A)
& l3_vectsp_1(A) )
=> ! [B] :
( ( ~ v3_struct_0(B)
& v3_rlvect_1(B)
& v4_rlvect_1(B)
& v5_rlvect_1(B)
& v6_rlvect_1(B)
& v5_vectsp_2(B,A)
& l1_vectsp_2(B,A) )
=> ! [C] :
( m1_subset_1(C,k1_zfmisc_1(u1_struct_0(B)))
=> ! [D] :
( m1_subset_1(D,k1_zfmisc_1(u1_struct_0(B)))
=> m1_rmod_2(k1_rmod_5(A,B,k5_subset_1(u1_struct_0(B),C,D)),A,k2_rmod_3(A,B,k1_rmod_5(A,B,C),k1_rmod_5(A,B,D))) ) ) ) ) ).
fof(dt_k1_rmod_5,axiom,
! [A,B,C] :
( ( ~ v3_struct_0(A)
& v3_rlvect_1(A)
& v4_rlvect_1(A)
& v5_rlvect_1(A)
& v6_rlvect_1(A)
& v4_group_1(A)
& v7_group_1(A)
& v6_vectsp_1(A)
& v7_vectsp_1(A)
& v8_vectsp_1(A)
& ~ v10_vectsp_1(A)
& v2_vectsp_2(A)
& l3_vectsp_1(A)
& ~ v3_struct_0(B)
& v3_rlvect_1(B)
& v4_rlvect_1(B)
& v5_rlvect_1(B)
& v6_rlvect_1(B)
& v5_vectsp_2(B,A)
& l1_vectsp_2(B,A)
& m1_subset_1(C,k1_zfmisc_1(u1_struct_0(B))) )
=> ( v3_vectsp_2(k1_rmod_5(A,B,C),A)
& m1_rmod_2(k1_rmod_5(A,B,C),A,B) ) ) ).
fof(d2_rmod_5,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& v3_rlvect_1(A)
& v4_rlvect_1(A)
& v5_rlvect_1(A)
& v6_rlvect_1(A)
& v4_group_1(A)
& v7_group_1(A)
& v6_vectsp_1(A)
& v7_vectsp_1(A)
& v8_vectsp_1(A)
& ~ v10_vectsp_1(A)
& v2_vectsp_2(A)
& l3_vectsp_1(A) )
=> ! [B] :
( ( ~ v3_struct_0(B)
& v3_rlvect_1(B)
& v4_rlvect_1(B)
& v5_rlvect_1(B)
& v6_rlvect_1(B)
& v5_vectsp_2(B,A)
& l1_vectsp_2(B,A) )
=> ! [C] :
( m1_subset_1(C,k1_zfmisc_1(u1_struct_0(B)))
=> ! [D] :
( ( v3_vectsp_2(D,A)
& m1_rmod_2(D,A,B) )
=> ( D = k1_rmod_5(A,B,C)
<=> u1_struct_0(D) = a_3_0_rmod_5(A,B,C) ) ) ) ) ) ).
fof(fraenkel_a_3_0_rmod_5,axiom,
! [A,B,C,D] :
( ( ~ v3_struct_0(B)
& v3_rlvect_1(B)
& v4_rlvect_1(B)
& v5_rlvect_1(B)
& v6_rlvect_1(B)
& v4_group_1(B)
& v7_group_1(B)
& v6_vectsp_1(B)
& v7_vectsp_1(B)
& v8_vectsp_1(B)
& ~ v10_vectsp_1(B)
& v2_vectsp_2(B)
& l3_vectsp_1(B)
& ~ v3_struct_0(C)
& v3_rlvect_1(C)
& v4_rlvect_1(C)
& v5_rlvect_1(C)
& v6_rlvect_1(C)
& v5_vectsp_2(C,B)
& l1_vectsp_2(C,B)
& m1_subset_1(D,k1_zfmisc_1(u1_struct_0(C))) )
=> ( r2_hidden(A,a_3_0_rmod_5(B,C,D))
<=> ? [E] :
( m2_rmod_4(E,B,C,D)
& A = k5_rmod_4(B,C,E) ) ) ) ).
%------------------------------------------------------------------------------