SET007 Axioms: SET007+200.ax
%------------------------------------------------------------------------------
% File : SET007+200 : TPTP v9.0.0. Released v3.4.0.
% Domain : Set Theory
% Axioms : Preliminaries to Structures
% Version : [Urb08] axioms.
% English :
% Refs : [Mat90] Matuszewski (1990), Formalized Mathematics
% : [Urb07] Urban (2007), MPTP 0.2: Design, Implementation, and In
% : [Urb08] Urban (2006), Email to G. Sutcliffe
% Source : [Urb08]
% Names : struct_0 [Urb08]
% Status : Satisfiable
% Syntax : Number of formulae : 27 ( 4 unt; 0 def)
% Number of atoms : 83 ( 10 equ)
% Maximal formula atoms : 6 ( 3 avg)
% Number of connectives : 73 ( 17 ~; 0 |; 32 &)
% ( 2 <=>; 22 =>; 0 <=; 0 <~>)
% Maximal formula depth : 8 ( 5 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 10 ( 8 usr; 1 prp; 0-3 aty)
% Number of functors : 9 ( 9 usr; 0 con; 1-3 aty)
% Number of variables : 45 ( 37 !; 8 ?)
% SPC :
% Comments : The individual reference can be found in [Mat90] by looking for
% the name provided by [Urb08].
% : Translated by MPTP from the Mizar Mathematical Library 4.48.930.
% : These set theory axioms are used in encodings of problems in
% various domains, including ALG, CAT, GRP, LAT, SET, and TOP.
%------------------------------------------------------------------------------
fof(rc1_struct_0,axiom,
? [A] :
( l1_struct_0(A)
& v1_struct_0(A) ) ).
fof(rc2_struct_0,axiom,
? [A] :
( l2_struct_0(A)
& v2_struct_0(A) ) ).
fof(rc3_struct_0,axiom,
? [A] :
( l1_struct_0(A)
& ~ v3_struct_0(A) ) ).
fof(rc4_struct_0,axiom,
? [A] :
( l2_struct_0(A)
& ~ v3_struct_0(A) ) ).
fof(fc1_struct_0,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& l1_struct_0(A) )
=> ~ v1_xboole_0(u1_struct_0(A)) ) ).
fof(rc5_struct_0,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& l1_struct_0(A) )
=> ? [B] :
( m1_subset_1(B,k1_zfmisc_1(u1_struct_0(A)))
& ~ v1_xboole_0(B) ) ) ).
fof(d1_struct_0,axiom,
! [A] :
( l1_struct_0(A)
=> ( v3_struct_0(A)
<=> v1_xboole_0(u1_struct_0(A)) ) ) ).
fof(dt_m1_struct_0,axiom,
! [A,B] :
( ( ~ v3_struct_0(A)
& l1_struct_0(A)
& ~ v1_xboole_0(B)
& m1_subset_1(B,k1_zfmisc_1(u1_struct_0(A))) )
=> ! [C] :
( m1_struct_0(C,A,B)
=> m1_subset_1(C,u1_struct_0(A)) ) ) ).
fof(existence_m1_struct_0,axiom,
! [A,B] :
( ( ~ v3_struct_0(A)
& l1_struct_0(A)
& ~ v1_xboole_0(B)
& m1_subset_1(B,k1_zfmisc_1(u1_struct_0(A))) )
=> ? [C] : m1_struct_0(C,A,B) ) ).
fof(redefinition_m1_struct_0,axiom,
! [A,B] :
( ( ~ v3_struct_0(A)
& l1_struct_0(A)
& ~ v1_xboole_0(B)
& m1_subset_1(B,k1_zfmisc_1(u1_struct_0(A))) )
=> ! [C] :
( m1_struct_0(C,A,B)
<=> m1_subset_1(C,B) ) ) ).
fof(dt_l1_struct_0,axiom,
$true ).
fof(existence_l1_struct_0,axiom,
? [A] : l1_struct_0(A) ).
fof(dt_l2_struct_0,axiom,
! [A] :
( l2_struct_0(A)
=> l1_struct_0(A) ) ).
fof(existence_l2_struct_0,axiom,
? [A] : l2_struct_0(A) ).
fof(abstractness_v1_struct_0,axiom,
! [A] :
( l1_struct_0(A)
=> ( v1_struct_0(A)
=> A = g1_struct_0(u1_struct_0(A)) ) ) ).
fof(abstractness_v2_struct_0,axiom,
! [A] :
( l2_struct_0(A)
=> ( v2_struct_0(A)
=> A = g2_struct_0(u1_struct_0(A),u2_struct_0(A)) ) ) ).
fof(dt_k1_struct_0,axiom,
! [A,B] :
( ( ~ v3_struct_0(A)
& l1_struct_0(A)
& m1_subset_1(B,u1_struct_0(A)) )
=> m1_subset_1(k1_struct_0(A,B),k1_zfmisc_1(u1_struct_0(A))) ) ).
fof(redefinition_k1_struct_0,axiom,
! [A,B] :
( ( ~ v3_struct_0(A)
& l1_struct_0(A)
& m1_subset_1(B,u1_struct_0(A)) )
=> k1_struct_0(A,B) = k1_tarski(B) ) ).
fof(dt_k2_struct_0,axiom,
! [A,B,C] :
( ( ~ v3_struct_0(A)
& l1_struct_0(A)
& m1_subset_1(B,u1_struct_0(A))
& m1_subset_1(C,u1_struct_0(A)) )
=> m1_subset_1(k2_struct_0(A,B,C),k1_zfmisc_1(u1_struct_0(A))) ) ).
fof(commutativity_k2_struct_0,axiom,
! [A,B,C] :
( ( ~ v3_struct_0(A)
& l1_struct_0(A)
& m1_subset_1(B,u1_struct_0(A))
& m1_subset_1(C,u1_struct_0(A)) )
=> k2_struct_0(A,B,C) = k2_struct_0(A,C,B) ) ).
fof(redefinition_k2_struct_0,axiom,
! [A,B,C] :
( ( ~ v3_struct_0(A)
& l1_struct_0(A)
& m1_subset_1(B,u1_struct_0(A))
& m1_subset_1(C,u1_struct_0(A)) )
=> k2_struct_0(A,B,C) = k2_tarski(B,C) ) ).
fof(dt_u1_struct_0,axiom,
$true ).
fof(dt_u2_struct_0,axiom,
! [A] :
( l2_struct_0(A)
=> m1_subset_1(u2_struct_0(A),u1_struct_0(A)) ) ).
fof(dt_g1_struct_0,axiom,
! [A] :
( v1_struct_0(g1_struct_0(A))
& l1_struct_0(g1_struct_0(A)) ) ).
fof(free_g1_struct_0,axiom,
! [A,B] :
( g1_struct_0(A) = g1_struct_0(B)
=> A = B ) ).
fof(dt_g2_struct_0,axiom,
! [A,B] :
( m1_subset_1(B,A)
=> ( v2_struct_0(g2_struct_0(A,B))
& l2_struct_0(g2_struct_0(A,B)) ) ) ).
fof(free_g2_struct_0,axiom,
! [A,B] :
( m1_subset_1(B,A)
=> ! [C,D] :
( g2_struct_0(A,B) = g2_struct_0(C,D)
=> ( A = C
& B = D ) ) ) ).
%------------------------------------------------------------------------------