SET007 Axioms: SET007+199.ax
%------------------------------------------------------------------------------
% File : SET007+199 : TPTP v9.0.0. Released v3.4.0.
% Domain : Set Theory
% Axioms : Euler's Theorem and Small Fermat's Theorem
% Version : [Urb08] axioms.
% English :
% Refs : [Mat90] Matuszewski (1990), Formalized Mathematics
% : [Urb07] Urban (2007), MPTP 0.2: Design, Implementation, and In
% : [Urb08] Urban (2006), Email to G. Sutcliffe
% Source : [Urb08]
% Names : euler_2 [Urb08]
% Status : Satisfiable
% Syntax : Number of formulae : 40 ( 15 unt; 0 def)
% Number of atoms : 137 ( 32 equ)
% Maximal formula atoms : 10 ( 3 avg)
% Number of connectives : 98 ( 1 ~; 14 |; 11 &)
% ( 2 <=>; 70 =>; 0 <=; 0 <~>)
% Maximal formula depth : 12 ( 5 avg)
% Maximal term depth : 4 ( 1 avg)
% Number of predicates : 13 ( 11 usr; 1 prp; 0-3 aty)
% Number of functors : 19 ( 19 usr; 4 con; 0-4 aty)
% Number of variables : 65 ( 65 !; 0 ?)
% SPC :
% Comments : The individual reference can be found in [Mat90] by looking for
% the name provided by [Urb08].
% : Translated by MPTP from the Mizar Mathematical Library 4.48.930.
% : These set theory axioms are used in encodings of problems in
% various domains, including ALG, CAT, GRP, LAT, SET, and TOP.
%------------------------------------------------------------------------------
fof(t1_euler_2,axiom,
! [A] :
( m2_subset_1(A,k1_numbers,k5_numbers)
=> ! [B] :
( m2_subset_1(B,k1_numbers,k5_numbers)
=> ( r1_int_2(A,B)
<=> r2_int_2(A,B) ) ) ) ).
fof(t2_euler_2,axiom,
! [A] :
( m2_subset_1(A,k1_numbers,k5_numbers)
=> ! [B] :
( v1_int_1(B)
=> ( r1_xreal_0(np__1,k3_xcmplx_0(A,B))
=> ( r1_xreal_0(A,np__1)
| r1_xreal_0(np__1,B) ) ) ) ) ).
fof(t3_euler_2,axiom,
$true ).
fof(t4_euler_2,axiom,
$true ).
fof(t5_euler_2,axiom,
! [A] :
( m2_subset_1(A,k1_numbers,k5_numbers)
=> ! [B] :
( m2_subset_1(B,k1_numbers,k5_numbers)
=> ! [C] :
( m2_subset_1(C,k1_numbers,k5_numbers)
=> ( ( r2_int_2(A,C)
& r2_int_2(B,C) )
=> ( A = np__0
| B = np__0
| C = np__0
| r2_int_2(C,k4_nat_1(k2_nat_1(A,B),C)) ) ) ) ) ) ).
fof(t6_euler_2,axiom,
! [A] :
( m2_subset_1(A,k1_numbers,k5_numbers)
=> ! [B] :
( m2_subset_1(B,k1_numbers,k5_numbers)
=> ! [C] :
( m2_subset_1(C,k1_numbers,k5_numbers)
=> ! [D] :
( m2_subset_1(D,k1_numbers,k5_numbers)
=> ( ( r2_int_2(A,C)
& r2_int_2(D,A)
& C = k4_nat_1(k2_nat_1(D,B),A) )
=> ( r1_xreal_0(A,np__1)
| B = np__0
| r2_int_2(A,B) ) ) ) ) ) ) ).
fof(t7_euler_2,axiom,
! [A] :
( m2_subset_1(A,k1_numbers,k5_numbers)
=> ! [B] :
( m2_subset_1(B,k1_numbers,k5_numbers)
=> k4_nat_1(k4_nat_1(A,B),B) = k4_nat_1(A,B) ) ) ).
fof(t8_euler_2,axiom,
! [A] :
( m2_subset_1(A,k1_numbers,k5_numbers)
=> ! [B] :
( m2_subset_1(B,k1_numbers,k5_numbers)
=> ! [C] :
( m2_subset_1(C,k1_numbers,k5_numbers)
=> k4_nat_1(k1_nat_1(A,B),C) = k4_nat_1(k1_nat_1(k4_nat_1(A,C),k4_nat_1(B,C)),C) ) ) ) ).
fof(t9_euler_2,axiom,
! [A] :
( m2_subset_1(A,k1_numbers,k5_numbers)
=> ! [B] :
( m2_subset_1(B,k1_numbers,k5_numbers)
=> ! [C] :
( m2_subset_1(C,k1_numbers,k5_numbers)
=> k4_nat_1(k2_nat_1(A,B),C) = k4_nat_1(k2_nat_1(A,k4_nat_1(B,C)),C) ) ) ) ).
fof(t10_euler_2,axiom,
! [A] :
( m2_subset_1(A,k1_numbers,k5_numbers)
=> ! [B] :
( m2_subset_1(B,k1_numbers,k5_numbers)
=> ! [C] :
( m2_subset_1(C,k1_numbers,k5_numbers)
=> k4_nat_1(k2_nat_1(A,B),C) = k4_nat_1(k2_nat_1(k4_nat_1(A,C),B),C) ) ) ) ).
fof(t11_euler_2,axiom,
! [A] :
( m2_subset_1(A,k1_numbers,k5_numbers)
=> ! [B] :
( m2_subset_1(B,k1_numbers,k5_numbers)
=> ! [C] :
( m2_subset_1(C,k1_numbers,k5_numbers)
=> k4_nat_1(k2_nat_1(A,B),C) = k4_nat_1(k2_nat_1(k4_nat_1(A,C),k4_nat_1(B,C)),C) ) ) ) ).
fof(t12_euler_2,axiom,
$true ).
fof(t13_euler_2,axiom,
$true ).
fof(t14_euler_2,axiom,
$true ).
fof(t15_euler_2,axiom,
$true ).
fof(t16_euler_2,axiom,
$true ).
fof(t17_euler_2,axiom,
$true ).
fof(t18_euler_2,axiom,
$true ).
fof(t19_euler_2,axiom,
$true ).
fof(t20_euler_2,axiom,
$true ).
fof(t21_euler_2,axiom,
$true ).
fof(t22_euler_2,axiom,
$true ).
fof(t23_euler_2,axiom,
$true ).
fof(t24_euler_2,axiom,
$true ).
fof(t25_euler_2,axiom,
! [A] :
( m1_trees_4(A,k1_numbers,k5_numbers)
=> ! [B] :
( m1_trees_4(B,k1_numbers,k5_numbers)
=> ( r1_rfinseq(A,B)
=> k10_wsierp_1(A) = k10_wsierp_1(B) ) ) ) ).
fof(d1_euler_2,axiom,
! [A] :
( m1_trees_4(A,k1_numbers,k5_numbers)
=> ! [B] :
( m2_subset_1(B,k1_numbers,k5_numbers)
=> ! [C] :
( m1_trees_4(C,k1_numbers,k5_numbers)
=> ( C = k2_euler_2(A,B)
<=> ( k3_finseq_1(C) = k3_finseq_1(A)
& ! [D] :
( m2_subset_1(D,k1_numbers,k5_numbers)
=> ( r2_hidden(D,k4_finseq_1(A))
=> k3_wsierp_1(C,D) = k4_nat_1(k3_wsierp_1(A,D),B) ) ) ) ) ) ) ) ).
fof(t26_euler_2,axiom,
! [A] :
( m2_subset_1(A,k1_numbers,k5_numbers)
=> ! [B] :
( m1_trees_4(B,k1_numbers,k5_numbers)
=> ( A != np__0
=> k4_nat_1(k10_wsierp_1(k2_euler_2(B,A)),A) = k4_nat_1(k10_wsierp_1(B),A) ) ) ) ).
fof(t27_euler_2,axiom,
! [A] :
( m2_subset_1(A,k1_numbers,k5_numbers)
=> ! [B] :
( m2_subset_1(B,k1_numbers,k5_numbers)
=> ! [C] :
( m2_subset_1(C,k1_numbers,k5_numbers)
=> ( ( k4_nat_1(k2_nat_1(A,C),B) = k4_nat_1(C,B)
& r2_int_2(B,C) )
=> ( A = np__0
| r1_xreal_0(B,np__1)
| C = np__0
| k4_nat_1(A,B) = np__1 ) ) ) ) ) ).
fof(t28_euler_2,axiom,
! [A] :
( m2_subset_1(A,k1_numbers,k5_numbers)
=> ! [B] :
( m1_trees_4(B,k1_numbers,k5_numbers)
=> k2_euler_2(k2_euler_2(B,A),A) = k2_euler_2(B,A) ) ) ).
fof(t29_euler_2,axiom,
! [A] :
( m2_subset_1(A,k1_numbers,k5_numbers)
=> ! [B] :
( m2_subset_1(B,k1_numbers,k5_numbers)
=> ! [C] :
( m1_trees_4(C,k1_numbers,k5_numbers)
=> k2_euler_2(k1_euler_2(A,k2_euler_2(C,B)),B) = k2_euler_2(k1_euler_2(A,C),B) ) ) ) ).
fof(t30_euler_2,axiom,
! [A] :
( m2_subset_1(A,k1_numbers,k5_numbers)
=> ! [B] :
( m1_trees_4(B,k1_numbers,k5_numbers)
=> ! [C] :
( m1_trees_4(C,k1_numbers,k5_numbers)
=> k2_euler_2(k4_wsierp_1(k1_numbers,k5_numbers,B,C),A) = k4_wsierp_1(k1_numbers,k5_numbers,k2_euler_2(B,A),k2_euler_2(C,A)) ) ) ) ).
fof(t31_euler_2,axiom,
! [A] :
( m2_subset_1(A,k1_numbers,k5_numbers)
=> ! [B] :
( m2_subset_1(B,k1_numbers,k5_numbers)
=> ! [C] :
( m1_trees_4(C,k1_numbers,k5_numbers)
=> ! [D] :
( m1_trees_4(D,k1_numbers,k5_numbers)
=> k2_euler_2(k1_euler_2(A,k4_wsierp_1(k1_numbers,k5_numbers,C,D)),B) = k4_wsierp_1(k1_numbers,k5_numbers,k2_euler_2(k1_euler_2(A,C),B),k2_euler_2(k1_euler_2(A,D),B)) ) ) ) ) ).
fof(t32_euler_2,axiom,
! [A] :
( m2_subset_1(A,k1_numbers,k5_numbers)
=> ! [B] :
( m2_subset_1(B,k1_numbers,k5_numbers)
=> ( r2_int_2(A,B)
=> ( A = np__0
| B = np__0
| ! [C] :
( m2_subset_1(C,k1_numbers,k5_numbers)
=> r2_int_2(k3_euler_2(A,C),B) ) ) ) ) ) ).
fof(t33_euler_2,axiom,
! [A] :
( m2_subset_1(A,k1_numbers,k5_numbers)
=> ! [B] :
( m2_subset_1(B,k1_numbers,k5_numbers)
=> ( r2_int_2(A,B)
=> ( A = np__0
| r1_xreal_0(B,np__1)
| k4_nat_1(k3_euler_2(A,k1_euler_1(B)),B) = np__1 ) ) ) ) ).
fof(t34_euler_2,axiom,
! [A] :
( m2_subset_1(A,k1_numbers,k5_numbers)
=> ! [B] :
( m2_subset_1(B,k1_numbers,k5_numbers)
=> ( ( v1_int_2(B)
& r2_int_2(A,B) )
=> ( A = np__0
| k4_nat_1(k3_euler_2(A,B),B) = k4_nat_1(A,B) ) ) ) ) ).
fof(dt_k1_euler_2,axiom,
! [A,B] :
( ( m1_subset_1(A,k5_numbers)
& m1_finseq_1(B,k5_numbers) )
=> m1_trees_4(k1_euler_2(A,B),k1_numbers,k5_numbers) ) ).
fof(redefinition_k1_euler_2,axiom,
! [A,B] :
( ( m1_subset_1(A,k5_numbers)
& m1_finseq_1(B,k5_numbers) )
=> k1_euler_2(A,B) = k9_rvsum_1(A,B) ) ).
fof(dt_k2_euler_2,axiom,
! [A,B] :
( ( m1_finseq_1(A,k5_numbers)
& m1_subset_1(B,k5_numbers) )
=> m1_trees_4(k2_euler_2(A,B),k1_numbers,k5_numbers) ) ).
fof(dt_k3_euler_2,axiom,
! [A,B] :
( ( m1_subset_1(A,k5_numbers)
& m1_subset_1(B,k5_numbers) )
=> m2_subset_1(k3_euler_2(A,B),k1_numbers,k5_numbers) ) ).
fof(redefinition_k3_euler_2,axiom,
! [A,B] :
( ( m1_subset_1(A,k5_numbers)
& m1_subset_1(B,k5_numbers) )
=> k3_euler_2(A,B) = k2_newton(A,B) ) ).
%------------------------------------------------------------------------------