SET007 Axioms: SET007+174.ax
%------------------------------------------------------------------------------
% File : SET007+174 : TPTP v9.0.0. Released v3.4.0.
% Domain : Set Theory
% Axioms : Binary Arithmetics, Addition and Subtraction of Integers
% Version : [Urb08] axioms.
% English :
% Refs : [Mat90] Matuszewski (1990), Formalized Mathematics
% : [Urb07] Urban (2007), MPTP 0.2: Design, Implementation, and In
% : [Urb08] Urban (2006), Email to G. Sutcliffe
% Source : [Urb08]
% Names : binari_2 [Urb08]
% Status : Satisfiable
% Syntax : Number of formulae : 35 ( 2 unt; 0 def)
% Number of atoms : 163 ( 37 equ)
% Maximal formula atoms : 9 ( 4 avg)
% Number of connectives : 154 ( 26 ~; 1 |; 39 &)
% ( 2 <=>; 86 =>; 0 <=; 0 <~>)
% Maximal formula depth : 13 ( 7 avg)
% Maximal term depth : 9 ( 2 avg)
% Number of predicates : 8 ( 6 usr; 1 prp; 0-3 aty)
% Number of functors : 39 ( 39 usr; 8 con; 0-6 aty)
% Number of variables : 94 ( 94 !; 0 ?)
% SPC :
% Comments : The individual reference can be found in [Mat90] by looking for
% the name provided by [Urb08].
% : Translated by MPTP from the Mizar Mathematical Library 4.48.930.
% : These set theory axioms are used in encodings of problems in
% various domains, including ALG, CAT, GRP, LAT, SET, and TOP.
%------------------------------------------------------------------------------
fof(d1_binari_2,axiom,
! [A] :
( m2_subset_1(A,k1_numbers,k5_numbers)
=> ! [B] :
( m2_finseq_2(B,k6_margrel1,k4_finseq_2(A,k6_margrel1))
=> ( B = k2_binari_2(A)
<=> ! [C] :
( m2_subset_1(C,k1_numbers,k5_numbers)
=> ( r2_hidden(C,k2_finseq_1(A))
=> k4_finseq_4(k5_numbers,k6_margrel1,B,C) = k2_cqc_lang(k6_margrel1,C,np__1,k8_margrel1,k7_margrel1) ) ) ) ) ) ).
fof(d2_binari_2,axiom,
! [A] :
( ( ~ v1_xboole_0(A)
& m2_subset_1(A,k1_numbers,k5_numbers) )
=> ! [B] :
( m2_finseq_2(B,k6_margrel1,k4_finseq_2(A,k6_margrel1))
=> k3_binari_2(A,B) = k10_binarith(A,k6_binarith(A,B),k2_binari_2(A)) ) ) ).
fof(d3_binari_2,axiom,
! [A] :
( m2_subset_1(A,k1_numbers,k5_numbers)
=> ! [B] :
( m2_finseq_2(B,k6_margrel1,k4_finseq_2(A,k6_margrel1))
=> ( ( k4_finseq_4(k5_numbers,k6_margrel1,B,A) = k7_margrel1
=> k4_binari_2(A,B) = k9_binarith(A,B) )
& ( k4_finseq_4(k5_numbers,k6_margrel1,B,A) != k7_margrel1
=> k4_binari_2(A,B) = k10_binop_2(k9_binarith(A,B),k3_series_1(np__2,A)) ) ) ) ) ).
fof(d4_binari_2,axiom,
! [A] :
( ( ~ v1_xboole_0(A)
& m2_subset_1(A,k1_numbers,k5_numbers) )
=> ! [B] :
( m2_finseq_2(B,k6_margrel1,k4_finseq_2(A,k6_margrel1))
=> ! [C] :
( m2_finseq_2(C,k6_margrel1,k4_finseq_2(A,k6_margrel1))
=> k5_binari_2(A,B,C) = k12_margrel1(k12_margrel1(k11_margrel1(k4_finseq_4(k5_numbers,k6_margrel1,B,A)),k11_margrel1(k4_finseq_4(k5_numbers,k6_margrel1,C,A))),k4_finseq_4(k5_numbers,k6_margrel1,k7_binarith(A,B,C),A)) ) ) ) ).
fof(d5_binari_2,axiom,
! [A] :
( ( ~ v1_xboole_0(A)
& m2_subset_1(A,k1_numbers,k5_numbers) )
=> ! [B] :
( m2_finseq_2(B,k6_margrel1,k4_finseq_2(A,k6_margrel1))
=> ! [C] :
( m2_finseq_2(C,k6_margrel1,k4_finseq_2(A,k6_margrel1))
=> k6_binari_2(A,B,C) = k12_margrel1(k12_margrel1(k4_finseq_4(k5_numbers,k6_margrel1,B,A),k4_finseq_4(k5_numbers,k6_margrel1,C,A)),k11_margrel1(k4_finseq_4(k5_numbers,k6_margrel1,k7_binarith(A,B,C),A))) ) ) ) ).
fof(t1_binari_2,axiom,
$true ).
fof(t2_binari_2,axiom,
$true ).
fof(t3_binari_2,axiom,
! [A] :
( m2_finseq_2(A,k6_margrel1,k4_finseq_2(np__2,k6_margrel1))
=> ( A = k12_binarith(np__1,np__1,k6_margrel1,k13_binarith(k6_margrel1,k7_margrel1),k13_binarith(k6_margrel1,k7_margrel1))
=> k4_binari_2(np__2,A) = np__0 ) ) ).
fof(t4_binari_2,axiom,
! [A] :
( m2_finseq_2(A,k6_margrel1,k4_finseq_2(np__2,k6_margrel1))
=> ( A = k12_binarith(np__1,np__1,k6_margrel1,k13_binarith(k6_margrel1,k8_margrel1),k13_binarith(k6_margrel1,k7_margrel1))
=> k4_binari_2(np__2,A) = np__1 ) ) ).
fof(t5_binari_2,axiom,
! [A] :
( m2_finseq_2(A,k6_margrel1,k4_finseq_2(np__2,k6_margrel1))
=> ( A = k12_binarith(np__1,np__1,k6_margrel1,k13_binarith(k6_margrel1,k7_margrel1),k13_binarith(k6_margrel1,k8_margrel1))
=> k4_binari_2(np__2,A) = k7_binop_2(np__2) ) ) ).
fof(t6_binari_2,axiom,
! [A] :
( m2_finseq_2(A,k6_margrel1,k4_finseq_2(np__2,k6_margrel1))
=> ( A = k12_binarith(np__1,np__1,k6_margrel1,k13_binarith(k6_margrel1,k8_margrel1),k13_binarith(k6_margrel1,k8_margrel1))
=> k4_binari_2(np__2,A) = k7_binop_2(np__1) ) ) ).
fof(t7_binari_2,axiom,
! [A] :
( m2_subset_1(A,k1_numbers,k5_numbers)
=> ! [B] :
( m2_subset_1(B,k1_numbers,k5_numbers)
=> ( ( r2_hidden(B,k2_finseq_1(A))
& B = np__1 )
=> k4_finseq_4(k5_numbers,k6_margrel1,k2_binari_2(A),B) = k8_margrel1 ) ) ) ).
fof(t8_binari_2,axiom,
! [A] :
( m2_subset_1(A,k1_numbers,k5_numbers)
=> ! [B] :
( m2_subset_1(B,k1_numbers,k5_numbers)
=> ( r2_hidden(B,k2_finseq_1(A))
=> ( B = np__1
| k4_finseq_4(k5_numbers,k6_margrel1,k2_binari_2(A),B) = k7_margrel1 ) ) ) ) ).
fof(t9_binari_2,axiom,
! [A] :
( ( ~ v1_xboole_0(A)
& m2_subset_1(A,k1_numbers,k5_numbers) )
=> k2_binari_2(k23_binop_2(A,np__1)) = k12_binarith(A,np__1,k6_margrel1,k2_binari_2(A),k13_binarith(k6_margrel1,k7_margrel1)) ) ).
fof(t10_binari_2,axiom,
! [A] :
( ( ~ v1_xboole_0(A)
& m2_subset_1(A,k1_numbers,k5_numbers) )
=> k4_binari_2(k23_binop_2(A,np__1),k12_binarith(A,np__1,k6_margrel1,k2_binari_2(A),k13_binarith(k6_margrel1,k7_margrel1))) = np__1 ) ).
fof(t11_binari_2,axiom,
! [A] :
( ( ~ v1_xboole_0(A)
& m2_subset_1(A,k1_numbers,k5_numbers) )
=> ! [B] :
( m2_finseq_2(B,k6_margrel1,k4_finseq_2(A,k6_margrel1))
=> ! [C] :
( m1_subset_1(C,k6_margrel1)
=> k6_binarith(k23_binop_2(A,np__1),k12_binarith(A,np__1,k6_margrel1,B,k13_binarith(k6_margrel1,C))) = k12_binarith(A,np__1,k6_margrel1,k6_binarith(A,B),k13_binarith(k6_margrel1,k11_margrel1(C))) ) ) ) ).
fof(t12_binari_2,axiom,
! [A] :
( ( ~ v1_xboole_0(A)
& m2_subset_1(A,k1_numbers,k5_numbers) )
=> ! [B] :
( m2_finseq_2(B,k6_margrel1,k4_finseq_2(A,k6_margrel1))
=> ! [C] :
( m1_subset_1(C,k6_margrel1)
=> k4_binari_2(k23_binop_2(A,np__1),k12_binarith(A,np__1,k6_margrel1,B,k13_binarith(k6_margrel1,C))) = k10_binop_2(k9_binarith(A,B),k2_cqc_lang(k5_numbers,C,k7_margrel1,np__0,k3_series_1(np__2,A))) ) ) ) ).
fof(t13_binari_2,axiom,
! [A] :
( ( ~ v1_xboole_0(A)
& m2_subset_1(A,k1_numbers,k5_numbers) )
=> ! [B] :
( m2_finseq_2(B,k6_margrel1,k4_finseq_2(A,k6_margrel1))
=> ! [C] :
( m2_finseq_2(C,k6_margrel1,k4_finseq_2(A,k6_margrel1))
=> ! [D] :
( m1_subset_1(D,k6_margrel1)
=> ! [E] :
( m1_subset_1(E,k6_margrel1)
=> k6_xcmplx_0(k2_xcmplx_0(k4_binari_2(k23_binop_2(A,np__1),k10_binarith(k23_binop_2(A,np__1),k12_binarith(A,np__1,k6_margrel1,B,k13_binarith(k6_margrel1,D)),k12_binarith(A,np__1,k6_margrel1,C,k13_binarith(k6_margrel1,E)))),k2_cqc_lang(k5_numbers,k5_binari_2(k23_binop_2(A,np__1),k12_binarith(A,np__1,k6_margrel1,B,k13_binarith(k6_margrel1,D)),k12_binarith(A,np__1,k6_margrel1,C,k13_binarith(k6_margrel1,E))),k7_margrel1,np__0,k3_series_1(np__2,k23_binop_2(A,np__1)))),k2_cqc_lang(k5_numbers,k6_binari_2(k23_binop_2(A,np__1),k12_binarith(A,np__1,k6_margrel1,B,k13_binarith(k6_margrel1,D)),k12_binarith(A,np__1,k6_margrel1,C,k13_binarith(k6_margrel1,E))),k7_margrel1,np__0,k3_series_1(np__2,k23_binop_2(A,np__1)))) = k2_xcmplx_0(k4_binari_2(k23_binop_2(A,np__1),k12_binarith(A,np__1,k6_margrel1,B,k13_binarith(k6_margrel1,D))),k4_binari_2(k23_binop_2(A,np__1),k12_binarith(A,np__1,k6_margrel1,C,k13_binarith(k6_margrel1,E)))) ) ) ) ) ) ).
fof(t14_binari_2,axiom,
! [A] :
( ( ~ v1_xboole_0(A)
& m2_subset_1(A,k1_numbers,k5_numbers) )
=> ! [B] :
( m2_finseq_2(B,k6_margrel1,k4_finseq_2(A,k6_margrel1))
=> ! [C] :
( m2_finseq_2(C,k6_margrel1,k4_finseq_2(A,k6_margrel1))
=> ! [D] :
( m1_subset_1(D,k6_margrel1)
=> ! [E] :
( m1_subset_1(E,k6_margrel1)
=> k4_binari_2(k23_binop_2(A,np__1),k10_binarith(k23_binop_2(A,np__1),k12_binarith(A,np__1,k6_margrel1,B,k13_binarith(k6_margrel1,D)),k12_binarith(A,np__1,k6_margrel1,C,k13_binarith(k6_margrel1,E)))) = k2_xcmplx_0(k6_xcmplx_0(k2_xcmplx_0(k4_binari_2(k23_binop_2(A,np__1),k12_binarith(A,np__1,k6_margrel1,B,k13_binarith(k6_margrel1,D))),k4_binari_2(k23_binop_2(A,np__1),k12_binarith(A,np__1,k6_margrel1,C,k13_binarith(k6_margrel1,E)))),k2_cqc_lang(k5_numbers,k5_binari_2(k23_binop_2(A,np__1),k12_binarith(A,np__1,k6_margrel1,B,k13_binarith(k6_margrel1,D)),k12_binarith(A,np__1,k6_margrel1,C,k13_binarith(k6_margrel1,E))),k7_margrel1,np__0,k3_series_1(np__2,k23_binop_2(A,np__1)))),k2_cqc_lang(k5_numbers,k6_binari_2(k23_binop_2(A,np__1),k12_binarith(A,np__1,k6_margrel1,B,k13_binarith(k6_margrel1,D)),k12_binarith(A,np__1,k6_margrel1,C,k13_binarith(k6_margrel1,E))),k7_margrel1,np__0,k3_series_1(np__2,k23_binop_2(A,np__1)))) ) ) ) ) ) ).
fof(t15_binari_2,axiom,
! [A] :
( ( ~ v1_xboole_0(A)
& m2_subset_1(A,k1_numbers,k5_numbers) )
=> ! [B] :
( m2_finseq_2(B,k6_margrel1,k4_finseq_2(A,k6_margrel1))
=> k9_binarith(A,k6_binarith(A,B)) = k10_binop_2(k9_binop_2(k7_binop_2(k9_binarith(A,B)),k3_series_1(np__2,A)),np__1) ) ) ).
fof(t16_binari_2,axiom,
! [A] :
( ( ~ v1_xboole_0(A)
& m2_subset_1(A,k1_numbers,k5_numbers) )
=> ! [B] :
( m2_finseq_2(B,k6_margrel1,k4_finseq_2(A,k6_margrel1))
=> ! [C] :
( m1_subset_1(C,k6_margrel1)
=> k3_binari_2(k23_binop_2(A,np__1),k12_binarith(A,np__1,k6_margrel1,B,k13_binarith(k6_margrel1,C))) = k12_binarith(A,np__1,k6_margrel1,k3_binari_2(A,B),k13_binarith(k6_margrel1,k4_binarith(k11_margrel1(C),k11_binarith(A,k6_binarith(A,B),k2_binari_2(A))))) ) ) ) ).
fof(t17_binari_2,axiom,
! [A] :
( ( ~ v1_xboole_0(A)
& m2_subset_1(A,k1_numbers,k5_numbers) )
=> ! [B] :
( m2_finseq_2(B,k6_margrel1,k4_finseq_2(A,k6_margrel1))
=> ! [C] :
( m1_subset_1(C,k6_margrel1)
=> k2_xcmplx_0(k4_binari_2(k23_binop_2(A,np__1),k3_binari_2(k23_binop_2(A,np__1),k12_binarith(A,np__1,k6_margrel1,B,k13_binarith(k6_margrel1,C)))),k2_cqc_lang(k5_numbers,k5_binari_2(k23_binop_2(A,np__1),k6_binarith(k23_binop_2(A,np__1),k12_binarith(A,np__1,k6_margrel1,B,k13_binarith(k6_margrel1,C))),k2_binari_2(k23_binop_2(A,np__1))),k7_margrel1,np__0,k3_series_1(np__2,k23_binop_2(A,np__1)))) = k4_xcmplx_0(k4_binari_2(k23_binop_2(A,np__1),k12_binarith(A,np__1,k6_margrel1,B,k13_binarith(k6_margrel1,C)))) ) ) ) ).
fof(t18_binari_2,axiom,
! [A] :
( ( ~ v1_xboole_0(A)
& m2_subset_1(A,k1_numbers,k5_numbers) )
=> ! [B] :
( m2_finseq_2(B,k6_margrel1,k4_finseq_2(A,k6_margrel1))
=> ! [C] :
( m1_subset_1(C,k6_margrel1)
=> k3_binari_2(k23_binop_2(A,np__1),k3_binari_2(k23_binop_2(A,np__1),k12_binarith(A,np__1,k6_margrel1,B,k13_binarith(k6_margrel1,C)))) = k12_binarith(A,np__1,k6_margrel1,B,k13_binarith(k6_margrel1,C)) ) ) ) ).
fof(d6_binari_2,axiom,
! [A] :
( ( ~ v1_xboole_0(A)
& m2_subset_1(A,k1_numbers,k5_numbers) )
=> ! [B] :
( m2_finseq_2(B,k6_margrel1,k4_finseq_2(A,k6_margrel1))
=> ! [C] :
( m2_finseq_2(C,k6_margrel1,k4_finseq_2(A,k6_margrel1))
=> ! [D] :
( m2_finseq_2(D,k6_margrel1,k4_finseq_2(A,k6_margrel1))
=> ( D = k7_binari_2(A,B,C)
<=> ! [E] :
( m2_subset_1(E,k1_numbers,k5_numbers)
=> ( r2_hidden(E,k2_finseq_1(A))
=> k4_finseq_4(k5_numbers,k6_margrel1,D,E) = k4_binarith(k4_binarith(k4_finseq_4(k5_numbers,k6_margrel1,B,E),k4_finseq_4(k5_numbers,k6_margrel1,k3_binari_2(A,C),E)),k4_finseq_4(k5_numbers,k6_margrel1,k7_binarith(A,B,k3_binari_2(A,C)),E)) ) ) ) ) ) ) ) ).
fof(t19_binari_2,axiom,
! [A] :
( ( ~ v1_xboole_0(A)
& m2_subset_1(A,k1_numbers,k5_numbers) )
=> ! [B] :
( m2_finseq_2(B,k6_margrel1,k4_finseq_2(A,k6_margrel1))
=> ! [C] :
( m2_finseq_2(C,k6_margrel1,k4_finseq_2(A,k6_margrel1))
=> k7_binari_2(A,B,C) = k10_binarith(A,B,k3_binari_2(A,C)) ) ) ) ).
fof(t20_binari_2,axiom,
! [A] :
( ( ~ v1_xboole_0(A)
& m2_subset_1(A,k1_numbers,k5_numbers) )
=> ! [B] :
( m2_finseq_2(B,k6_margrel1,k4_finseq_2(A,k6_margrel1))
=> ! [C] :
( m2_finseq_2(C,k6_margrel1,k4_finseq_2(A,k6_margrel1))
=> ! [D] :
( m1_subset_1(D,k6_margrel1)
=> ! [E] :
( m1_subset_1(E,k6_margrel1)
=> k7_binari_2(k23_binop_2(A,np__1),k12_binarith(A,np__1,k6_margrel1,B,k13_binarith(k6_margrel1,D)),k12_binarith(A,np__1,k6_margrel1,C,k13_binarith(k6_margrel1,E))) = k12_binarith(A,np__1,k6_margrel1,k10_binarith(A,B,k3_binari_2(A,C)),k13_binarith(k6_margrel1,k4_binarith(k4_binarith(k4_binarith(D,k11_margrel1(E)),k11_binarith(A,k6_binarith(A,C),k2_binari_2(A))),k11_binarith(A,B,k3_binari_2(A,C))))) ) ) ) ) ) ).
fof(t21_binari_2,axiom,
! [A] :
( ( ~ v1_xboole_0(A)
& m2_subset_1(A,k1_numbers,k5_numbers) )
=> ! [B] :
( m2_finseq_2(B,k6_margrel1,k4_finseq_2(A,k6_margrel1))
=> ! [C] :
( m2_finseq_2(C,k6_margrel1,k4_finseq_2(A,k6_margrel1))
=> ! [D] :
( m1_subset_1(D,k6_margrel1)
=> ! [E] :
( m1_subset_1(E,k6_margrel1)
=> k2_xcmplx_0(k6_xcmplx_0(k2_xcmplx_0(k4_binari_2(k23_binop_2(A,np__1),k7_binari_2(k23_binop_2(A,np__1),k12_binarith(A,np__1,k6_margrel1,B,k13_binarith(k6_margrel1,D)),k12_binarith(A,np__1,k6_margrel1,C,k13_binarith(k6_margrel1,E)))),k2_cqc_lang(k5_numbers,k5_binari_2(k23_binop_2(A,np__1),k12_binarith(A,np__1,k6_margrel1,B,k13_binarith(k6_margrel1,D)),k3_binari_2(k23_binop_2(A,np__1),k12_binarith(A,np__1,k6_margrel1,C,k13_binarith(k6_margrel1,E)))),k7_margrel1,np__0,k3_series_1(np__2,k23_binop_2(A,np__1)))),k2_cqc_lang(k5_numbers,k6_binari_2(k23_binop_2(A,np__1),k12_binarith(A,np__1,k6_margrel1,B,k13_binarith(k6_margrel1,D)),k3_binari_2(k23_binop_2(A,np__1),k12_binarith(A,np__1,k6_margrel1,C,k13_binarith(k6_margrel1,E)))),k7_margrel1,np__0,k3_series_1(np__2,k23_binop_2(A,np__1)))),k2_cqc_lang(k5_numbers,k5_binari_2(k23_binop_2(A,np__1),k6_binarith(k23_binop_2(A,np__1),k12_binarith(A,np__1,k6_margrel1,C,k13_binarith(k6_margrel1,E))),k2_binari_2(k23_binop_2(A,np__1))),k7_margrel1,np__0,k3_series_1(np__2,k23_binop_2(A,np__1)))) = k6_xcmplx_0(k4_binari_2(k23_binop_2(A,np__1),k12_binarith(A,np__1,k6_margrel1,B,k13_binarith(k6_margrel1,D))),k4_binari_2(k23_binop_2(A,np__1),k12_binarith(A,np__1,k6_margrel1,C,k13_binarith(k6_margrel1,E)))) ) ) ) ) ) ).
fof(dt_k1_binari_2,axiom,
! [A,B,C,D,E,F] :
( ( ~ v1_xboole_0(A)
& ~ v1_xboole_0(B)
& m1_subset_1(B,k1_zfmisc_1(A))
& m1_subset_1(E,B)
& m1_subset_1(F,B) )
=> m2_subset_1(k1_binari_2(A,B,C,D,E,F),A,B) ) ).
fof(redefinition_k1_binari_2,axiom,
! [A,B,C,D,E,F] :
( ( ~ v1_xboole_0(A)
& ~ v1_xboole_0(B)
& m1_subset_1(B,k1_zfmisc_1(A))
& m1_subset_1(E,B)
& m1_subset_1(F,B) )
=> k1_binari_2(A,B,C,D,E,F) = k1_cqc_lang(C,D,E,F) ) ).
fof(dt_k2_binari_2,axiom,
! [A] :
( m1_subset_1(A,k5_numbers)
=> m2_finseq_2(k2_binari_2(A),k6_margrel1,k4_finseq_2(A,k6_margrel1)) ) ).
fof(dt_k3_binari_2,axiom,
! [A,B] :
( ( ~ v1_xboole_0(A)
& m1_subset_1(A,k5_numbers)
& m1_subset_1(B,k4_finseq_2(A,k6_margrel1)) )
=> m2_finseq_2(k3_binari_2(A,B),k6_margrel1,k4_finseq_2(A,k6_margrel1)) ) ).
fof(dt_k4_binari_2,axiom,
! [A,B] :
( ( m1_subset_1(A,k5_numbers)
& m1_subset_1(B,k4_finseq_2(A,k6_margrel1)) )
=> v1_int_1(k4_binari_2(A,B)) ) ).
fof(dt_k5_binari_2,axiom,
! [A,B,C] :
( ( ~ v1_xboole_0(A)
& m1_subset_1(A,k5_numbers)
& m1_subset_1(B,k4_finseq_2(A,k6_margrel1))
& m1_subset_1(C,k4_finseq_2(A,k6_margrel1)) )
=> m1_subset_1(k5_binari_2(A,B,C),k6_margrel1) ) ).
fof(dt_k6_binari_2,axiom,
! [A,B,C] :
( ( ~ v1_xboole_0(A)
& m1_subset_1(A,k5_numbers)
& m1_subset_1(B,k4_finseq_2(A,k6_margrel1))
& m1_subset_1(C,k4_finseq_2(A,k6_margrel1)) )
=> m1_subset_1(k6_binari_2(A,B,C),k6_margrel1) ) ).
fof(dt_k7_binari_2,axiom,
! [A,B,C] :
( ( ~ v1_xboole_0(A)
& m1_subset_1(A,k5_numbers)
& m1_subset_1(B,k4_finseq_2(A,k6_margrel1))
& m1_subset_1(C,k4_finseq_2(A,k6_margrel1)) )
=> m2_finseq_2(k7_binari_2(A,B,C),k6_margrel1,k4_finseq_2(A,k6_margrel1)) ) ).
%------------------------------------------------------------------------------