SET007 Axioms: SET007+122.ax
%------------------------------------------------------------------------------
% File : SET007+122 : TPTP v9.0.0. Released v3.4.0.
% Domain : Set Theory
% Axioms : Schemes
% Version : [Urb08] axioms.
% English :
% Refs : [Mat90] Matuszewski (1990), Formalized Mathematics
% : [Urb07] Urban (2007), MPTP 0.2: Design, Implementation, and In
% : [Urb08] Urban (2006), Email to G. Sutcliffe
% Source : [Urb08]
% Names : schems_1 [Urb08]
% Status : Satisfiable
% Syntax : Number of formulae : 16 ( 0 unt; 0 def)
% Number of atoms : 50 ( 0 equ)
% Maximal formula atoms : 4 ( 3 avg)
% Number of connectives : 43 ( 9 ~; 3 |; 9 &)
% ( 2 <=>; 20 =>; 0 <=; 0 <~>)
% Maximal formula depth : 7 ( 5 avg)
% Maximal term depth : 1 ( 1 avg)
% Number of predicates : 25 ( 25 usr; 1 prp; 0-2 aty)
% Number of functors : 0 ( 0 usr; 0 con; --- aty)
% Number of variables : 55 ( 35 !; 20 ?)
% SPC :
% Comments : The individual reference can be found in [Mat90] by looking for
% the name provided by [Urb08].
% : Translated by MPTP from the Mizar Mathematical Library 4.48.930.
% : These set theory axioms are used in encodings of problems in
% various domains, including ALG, CAT, GRP, LAT, SET, and TOP.
%------------------------------------------------------------------------------
fof(s1_schems_1,axiom,
( ! [A] : p1_s1_schems_1(A)
=> ? [A] : p1_s1_schems_1(A) ) ).
fof(s2_schems_1,axiom,
( ? [A] :
! [B] : p1_s2_schems_1(A,B)
=> ! [A] :
? [B] : p1_s2_schems_1(B,A) ) ).
fof(s3_schems_1,axiom,
( ! [A] :
( p1_s3_schems_1(A)
=> p2_s3_schems_1(A) )
=> ( ! [A] : p1_s3_schems_1(A)
=> ! [A] : p2_s3_schems_1(A) ) ) ).
fof(s4_schems_1,axiom,
( ! [A] :
( p1_s4_schems_1(A)
<=> p2_s4_schems_1(A) )
=> ( ! [A] : p1_s4_schems_1(A)
<=> ! [A] : p2_s4_schems_1(A) ) ) ).
fof(s5_schems_1,axiom,
( ! [A] :
( p1_s5_schems_1(A)
=> p2_s5_schems_1 )
=> ( ! [A] : p1_s5_schems_1(A)
=> p2_s5_schems_1 ) ) ).
fof(s6_schems_1,axiom,
( ~ ( ! [A] : ~ p1_s6_schems_1(A)
& ~ ! [A] : p2_s6_schems_1(A) )
=> ? [A] :
! [B] :
( p1_s6_schems_1(A)
| p2_s6_schems_1(B) ) ) ).
fof(s7_schems_1,axiom,
( ? [A] :
! [B] :
( p1_s7_schems_1(A)
| p2_s7_schems_1(B) )
=> ~ ( ! [A] : ~ p1_s7_schems_1(A)
& ~ ! [A] : p2_s7_schems_1(A) ) ) ).
fof(s8_schems_1,axiom,
( ! [A] :
~ ! [B] :
( ~ p1_s8_schems_1(B)
& ~ p2_s8_schems_1(A) )
=> ? [A] :
! [B] :
( p1_s8_schems_1(A)
| p2_s8_schems_1(B) ) ) ).
fof(s9_schems_1,axiom,
( ( ? [A] : p1_s9_schems_1(A)
& ! [A] : p2_s9_schems_1(A) )
=> ! [A] :
? [B] :
( p1_s9_schems_1(B)
& p2_s9_schems_1(A) ) ) ).
fof(s10_schems_1,axiom,
( ! [A] :
? [B] :
( p1_s10_schems_1(B)
& p2_s10_schems_1(A) )
=> ( ? [A] : p1_s10_schems_1(A)
& ! [A] : p2_s10_schems_1(A) ) ) ).
fof(s11_schems_1,axiom,
( ! [A] :
? [B] :
( p1_s11_schems_1(B)
& p2_s11_schems_1(A) )
=> ? [A] :
! [B] :
( p1_s11_schems_1(A)
& p2_s11_schems_1(B) ) ) ).
fof(s12_schems_1,axiom,
( ! [A,B] : p1_s12_schems_1(A,B)
=> ? [A] :
! [B] : p1_s12_schems_1(B,A) ) ).
fof(s13_schems_1,axiom,
( ? [A] :
! [B] : p1_s13_schems_1(A,B)
=> ? [A] : p1_s13_schems_1(A,A) ) ).
fof(s14_schems_1,axiom,
( ! [A] : p1_s14_schems_1(A,A)
=> ! [A] :
? [B] : p1_s14_schems_1(B,A) ) ).
fof(s15_schems_1,axiom,
( ! [A] : p1_s15_schems_1(A,A)
=> ! [A] :
? [B] : p1_s15_schems_1(A,B) ) ).
fof(s16_schems_1,axiom,
( ! [A] :
? [B] : p1_s16_schems_1(B,A)
=> ? [A,B] : p1_s16_schems_1(A,B) ) ).
%------------------------------------------------------------------------------