SET007 Axioms: SET007+12.ax
%------------------------------------------------------------------------------
% File : SET007+12 : TPTP v9.0.0. Released v3.4.0.
% Domain : Set Theory
% Axioms : Graphs of Functions
% Version : [Urb08] axioms.
% English :
% Refs : [Mat90] Matuszewski (1990), Formalized Mathematics
% : [Urb07] Urban (2007), MPTP 0.2: Design, Implementation, and In
% : [Urb08] Urban (2006), Email to G. Sutcliffe
% Source : [Urb08]
% Names : grfunc_1 [Urb08]
% Status : Satisfiable
% Syntax : Number of formulae : 89 ( 54 unt; 0 def)
% Number of atoms : 287 ( 33 equ)
% Maximal formula atoms : 11 ( 3 avg)
% Number of connectives : 203 ( 5 ~; 1 |; 99 &)
% ( 7 <=>; 91 =>; 0 <=; 0 <~>)
% Maximal formula depth : 13 ( 4 avg)
% Maximal term depth : 4 ( 1 avg)
% Number of predicates : 8 ( 6 usr; 1 prp; 0-2 aty)
% Number of functors : 15 ( 15 usr; 1 con; 0-2 aty)
% Number of variables : 99 ( 99 !; 0 ?)
% SPC :
% Comments : The individual reference can be found in [Mat90] by looking for
% the name provided by [Urb08].
% : Translated by MPTP from the Mizar Mathematical Library 4.48.930.
% : These set theory axioms are used in encodings of problems in
% various domains, including ALG, CAT, GRP, LAT, SET, and TOP.
%------------------------------------------------------------------------------
fof(t1_grfunc_1,axiom,
$true ).
fof(t2_grfunc_1,axiom,
$true ).
fof(t3_grfunc_1,axiom,
$true ).
fof(t4_grfunc_1,axiom,
$true ).
fof(t5_grfunc_1,axiom,
$true ).
fof(t6_grfunc_1,axiom,
! [A] :
( ( v1_relat_1(A)
& v1_funct_1(A) )
=> ! [B] :
( r1_tarski(B,A)
=> ( v1_relat_1(B)
& v1_funct_1(B) ) ) ) ).
fof(t7_grfunc_1,axiom,
$true ).
fof(t8_grfunc_1,axiom,
! [A] :
( ( v1_relat_1(A)
& v1_funct_1(A) )
=> ! [B] :
( ( v1_relat_1(B)
& v1_funct_1(B) )
=> ( r1_tarski(A,B)
<=> ( r1_tarski(k1_relat_1(A),k1_relat_1(B))
& ! [C] :
( r2_hidden(C,k1_relat_1(A))
=> k1_funct_1(A,C) = k1_funct_1(B,C) ) ) ) ) ) ).
fof(t9_grfunc_1,axiom,
! [A] :
( ( v1_relat_1(A)
& v1_funct_1(A) )
=> ! [B] :
( ( v1_relat_1(B)
& v1_funct_1(B) )
=> ( ( k1_relat_1(A) = k1_relat_1(B)
& r1_tarski(A,B) )
=> A = B ) ) ) ).
fof(t10_grfunc_1,axiom,
$true ).
fof(t11_grfunc_1,axiom,
$true ).
fof(t12_grfunc_1,axiom,
! [A,B,C] :
( ( v1_relat_1(C)
& v1_funct_1(C) )
=> ! [D] :
( ( v1_relat_1(D)
& v1_funct_1(D) )
=> ( r2_hidden(k4_tarski(A,B),k5_relat_1(D,C))
=> ( r2_hidden(k4_tarski(A,k1_funct_1(D,A)),D)
& r2_hidden(k4_tarski(k1_funct_1(D,A),B),C) ) ) ) ) ).
fof(t13_grfunc_1,axiom,
! [A] :
( ( v1_relat_1(A)
& v1_funct_1(A) )
=> ! [B] :
( ( v1_relat_1(B)
& v1_funct_1(B) )
=> ! [C] :
( ( v1_relat_1(C)
& v1_funct_1(C) )
=> ( r1_tarski(A,B)
=> ( r1_tarski(k5_relat_1(A,C),k5_relat_1(B,C))
& r1_tarski(k5_relat_1(C,A),k5_relat_1(C,B)) ) ) ) ) ) ).
fof(t14_grfunc_1,axiom,
$true ).
fof(t15_grfunc_1,axiom,
! [A,B] :
( v1_relat_1(k1_tarski(k4_tarski(A,B)))
& v1_funct_1(k1_tarski(k4_tarski(A,B))) ) ).
fof(t16_grfunc_1,axiom,
! [A,B,C] :
( ( v1_relat_1(C)
& v1_funct_1(C) )
=> ( C = k1_tarski(k4_tarski(A,B))
=> k1_funct_1(C,A) = B ) ) ).
fof(t17_grfunc_1,axiom,
$true ).
fof(t18_grfunc_1,axiom,
! [A,B] :
( ( v1_relat_1(B)
& v1_funct_1(B) )
=> ( k1_relat_1(B) = k1_tarski(A)
=> B = k1_tarski(k4_tarski(A,k1_funct_1(B,A))) ) ) ).
fof(t19_grfunc_1,axiom,
! [A,B,C,D] :
( ( v1_relat_1(k2_tarski(k4_tarski(A,B),k4_tarski(C,D)))
& v1_funct_1(k2_tarski(k4_tarski(A,B),k4_tarski(C,D))) )
<=> ( A = C
=> B = D ) ) ).
fof(t20_grfunc_1,axiom,
$true ).
fof(t21_grfunc_1,axiom,
$true ).
fof(t22_grfunc_1,axiom,
$true ).
fof(t23_grfunc_1,axiom,
$true ).
fof(t24_grfunc_1,axiom,
$true ).
fof(t25_grfunc_1,axiom,
! [A] :
( ( v1_relat_1(A)
& v1_funct_1(A) )
=> ( v2_funct_1(A)
<=> ! [B,C,D] :
( ( r2_hidden(k4_tarski(B,D),A)
& r2_hidden(k4_tarski(C,D),A) )
=> B = C ) ) ) ).
fof(t26_grfunc_1,axiom,
! [A] :
( ( v1_relat_1(A)
& v1_funct_1(A) )
=> ! [B] :
( ( v1_relat_1(B)
& v1_funct_1(B) )
=> ( ( r1_tarski(A,B)
& v2_funct_1(B) )
=> v2_funct_1(A) ) ) ) ).
fof(t27_grfunc_1,axiom,
! [A,B] :
( ( v1_relat_1(B)
& v1_funct_1(B) )
=> ( v1_relat_1(k3_xboole_0(B,A))
& v1_funct_1(k3_xboole_0(B,A)) ) ) ).
fof(t28_grfunc_1,axiom,
! [A] :
( ( v1_relat_1(A)
& v1_funct_1(A) )
=> ! [B] :
( ( v1_relat_1(B)
& v1_funct_1(B) )
=> ! [C] :
( ( v1_relat_1(C)
& v1_funct_1(C) )
=> ( A = k3_xboole_0(B,C)
=> ( r1_tarski(k1_relat_1(A),k3_xboole_0(k1_relat_1(B),k1_relat_1(C)))
& r1_tarski(k2_relat_1(A),k3_xboole_0(k2_relat_1(B),k2_relat_1(C))) ) ) ) ) ) ).
fof(t29_grfunc_1,axiom,
! [A,B] :
( ( v1_relat_1(B)
& v1_funct_1(B) )
=> ! [C] :
( ( v1_relat_1(C)
& v1_funct_1(C) )
=> ! [D] :
( ( v1_relat_1(D)
& v1_funct_1(D) )
=> ( ( B = k3_xboole_0(C,D)
& r2_hidden(A,k1_relat_1(B)) )
=> ( k1_funct_1(B,A) = k1_funct_1(C,A)
& k1_funct_1(B,A) = k1_funct_1(D,A) ) ) ) ) ) ).
fof(t30_grfunc_1,axiom,
! [A] :
( ( v1_relat_1(A)
& v1_funct_1(A) )
=> ! [B] :
( ( v1_relat_1(B)
& v1_funct_1(B) )
=> ! [C] :
( ( v1_relat_1(C)
& v1_funct_1(C) )
=> ( C = k3_xboole_0(A,B)
=> ( ( ~ v2_funct_1(A)
& ~ v2_funct_1(B) )
| v2_funct_1(C) ) ) ) ) ) ).
fof(t31_grfunc_1,axiom,
! [A] :
( ( v1_relat_1(A)
& v1_funct_1(A) )
=> ! [B] :
( ( v1_relat_1(B)
& v1_funct_1(B) )
=> ( r1_xboole_0(k1_relat_1(A),k1_relat_1(B))
=> ( v1_relat_1(k2_xboole_0(A,B))
& v1_funct_1(k2_xboole_0(A,B)) ) ) ) ) ).
fof(t32_grfunc_1,axiom,
! [A] :
( ( v1_relat_1(A)
& v1_funct_1(A) )
=> ! [B] :
( ( v1_relat_1(B)
& v1_funct_1(B) )
=> ! [C] :
( ( v1_relat_1(C)
& v1_funct_1(C) )
=> ( ( r1_tarski(A,B)
& r1_tarski(C,B) )
=> ( v1_relat_1(k2_xboole_0(A,C))
& v1_funct_1(k2_xboole_0(A,C)) ) ) ) ) ) ).
fof(t33_grfunc_1,axiom,
! [A] :
( ( v1_relat_1(A)
& v1_funct_1(A) )
=> ! [B] :
( ( v1_relat_1(B)
& v1_funct_1(B) )
=> ! [C] :
( ( v1_relat_1(C)
& v1_funct_1(C) )
=> ( A = k2_xboole_0(B,C)
=> ( k1_relat_1(A) = k2_xboole_0(k1_relat_1(B),k1_relat_1(C))
& k2_relat_1(A) = k2_xboole_0(k2_relat_1(B),k2_relat_1(C)) ) ) ) ) ) ).
fof(t34_grfunc_1,axiom,
! [A,B] :
( ( v1_relat_1(B)
& v1_funct_1(B) )
=> ! [C] :
( ( v1_relat_1(C)
& v1_funct_1(C) )
=> ! [D] :
( ( v1_relat_1(D)
& v1_funct_1(D) )
=> ( ( r2_hidden(A,k1_relat_1(B))
& C = k2_xboole_0(B,D) )
=> k1_funct_1(C,A) = k1_funct_1(B,A) ) ) ) ) ).
fof(t35_grfunc_1,axiom,
! [A,B] :
( ( v1_relat_1(B)
& v1_funct_1(B) )
=> ! [C] :
( ( v1_relat_1(C)
& v1_funct_1(C) )
=> ! [D] :
( ( v1_relat_1(D)
& v1_funct_1(D) )
=> ( ( r2_hidden(A,k1_relat_1(B))
& C = k2_xboole_0(D,B) )
=> k1_funct_1(C,A) = k1_funct_1(B,A) ) ) ) ) ).
fof(t36_grfunc_1,axiom,
! [A,B] :
( ( v1_relat_1(B)
& v1_funct_1(B) )
=> ! [C] :
( ( v1_relat_1(C)
& v1_funct_1(C) )
=> ! [D] :
( ( v1_relat_1(D)
& v1_funct_1(D) )
=> ~ ( r2_hidden(A,k1_relat_1(B))
& B = k2_xboole_0(C,D)
& k1_funct_1(B,A) != k1_funct_1(C,A)
& k1_funct_1(B,A) != k1_funct_1(D,A) ) ) ) ) ).
fof(t37_grfunc_1,axiom,
! [A] :
( ( v1_relat_1(A)
& v1_funct_1(A) )
=> ! [B] :
( ( v1_relat_1(B)
& v1_funct_1(B) )
=> ! [C] :
( ( v1_relat_1(C)
& v1_funct_1(C) )
=> ( ( v2_funct_1(A)
& v2_funct_1(B)
& C = k2_xboole_0(A,B)
& r1_xboole_0(k2_relat_1(A),k2_relat_1(B)) )
=> v2_funct_1(C) ) ) ) ) ).
fof(t38_grfunc_1,axiom,
! [A,B] :
( ( v1_relat_1(B)
& v1_funct_1(B) )
=> ( v1_relat_1(k4_xboole_0(B,A))
& v1_funct_1(k4_xboole_0(B,A)) ) ) ).
fof(t39_grfunc_1,axiom,
$true ).
fof(t40_grfunc_1,axiom,
$true ).
fof(t41_grfunc_1,axiom,
$true ).
fof(t42_grfunc_1,axiom,
$true ).
fof(t43_grfunc_1,axiom,
$true ).
fof(t44_grfunc_1,axiom,
$true ).
fof(t45_grfunc_1,axiom,
$true ).
fof(t46_grfunc_1,axiom,
! [A] :
( ( v1_relat_1(A)
& v1_funct_1(A) )
=> ( A = k1_xboole_0
=> v2_funct_1(A) ) ) ).
fof(t47_grfunc_1,axiom,
! [A] :
( ( v1_relat_1(A)
& v1_funct_1(A) )
=> ( v2_funct_1(A)
=> ! [B,C] :
( r2_hidden(k4_tarski(C,B),k2_funct_1(A))
<=> r2_hidden(k4_tarski(B,C),A) ) ) ) ).
fof(t48_grfunc_1,axiom,
$true ).
fof(t49_grfunc_1,axiom,
! [A] :
( ( v1_relat_1(A)
& v1_funct_1(A) )
=> ( A = k1_xboole_0
=> k2_funct_1(A) = k1_xboole_0 ) ) ).
fof(t50_grfunc_1,axiom,
$true ).
fof(t51_grfunc_1,axiom,
$true ).
fof(t52_grfunc_1,axiom,
! [A,B,C] :
( ( v1_relat_1(C)
& v1_funct_1(C) )
=> ( ( r2_hidden(A,k1_relat_1(C))
& r2_hidden(A,B) )
<=> r2_hidden(k4_tarski(A,k1_funct_1(C,A)),k7_relat_1(C,B)) ) ) ).
fof(t53_grfunc_1,axiom,
$true ).
fof(t54_grfunc_1,axiom,
! [A,B] :
( ( v1_relat_1(B)
& v1_funct_1(B) )
=> ! [C] :
( ( v1_relat_1(C)
& v1_funct_1(C) )
=> ! [D] :
( ( v1_relat_1(D)
& v1_funct_1(D) )
=> ( r1_tarski(k5_relat_1(C,k7_relat_1(B,A)),k5_relat_1(C,B))
& r1_tarski(k5_relat_1(k7_relat_1(B,A),D),k5_relat_1(B,D)) ) ) ) ) ).
fof(t55_grfunc_1,axiom,
$true ).
fof(t56_grfunc_1,axiom,
$true ).
fof(t57_grfunc_1,axiom,
$true ).
fof(t58_grfunc_1,axiom,
$true ).
fof(t59_grfunc_1,axiom,
$true ).
fof(t60_grfunc_1,axiom,
$true ).
fof(t61_grfunc_1,axiom,
$true ).
fof(t62_grfunc_1,axiom,
$true ).
fof(t63_grfunc_1,axiom,
$true ).
fof(t64_grfunc_1,axiom,
! [A] :
( ( v1_relat_1(A)
& v1_funct_1(A) )
=> ! [B] :
( ( v1_relat_1(B)
& v1_funct_1(B) )
=> ( r1_tarski(A,B)
=> k7_relat_1(B,k1_relat_1(A)) = A ) ) ) ).
fof(t65_grfunc_1,axiom,
$true ).
fof(t66_grfunc_1,axiom,
$true ).
fof(t67_grfunc_1,axiom,
! [A,B,C] :
( ( v1_relat_1(C)
& v1_funct_1(C) )
=> ( ( r2_hidden(A,k1_relat_1(C))
& r2_hidden(k1_funct_1(C,A),B) )
<=> r2_hidden(k4_tarski(A,k1_funct_1(C,A)),k8_relat_1(B,C)) ) ) ).
fof(t68_grfunc_1,axiom,
$true ).
fof(t69_grfunc_1,axiom,
! [A,B] :
( ( v1_relat_1(B)
& v1_funct_1(B) )
=> ! [C] :
( ( v1_relat_1(C)
& v1_funct_1(C) )
=> ! [D] :
( ( v1_relat_1(D)
& v1_funct_1(D) )
=> ( r1_tarski(k5_relat_1(C,k8_relat_1(A,B)),k5_relat_1(C,B))
& r1_tarski(k5_relat_1(k8_relat_1(A,B),D),k5_relat_1(B,D)) ) ) ) ) ).
fof(t70_grfunc_1,axiom,
$true ).
fof(t71_grfunc_1,axiom,
$true ).
fof(t72_grfunc_1,axiom,
$true ).
fof(t73_grfunc_1,axiom,
$true ).
fof(t74_grfunc_1,axiom,
$true ).
fof(t75_grfunc_1,axiom,
$true ).
fof(t76_grfunc_1,axiom,
$true ).
fof(t77_grfunc_1,axiom,
$true ).
fof(t78_grfunc_1,axiom,
$true ).
fof(t79_grfunc_1,axiom,
! [A] :
( ( v1_relat_1(A)
& v1_funct_1(A) )
=> ! [B] :
( ( v1_relat_1(B)
& v1_funct_1(B) )
=> ( ( r1_tarski(A,B)
& v2_funct_1(B) )
=> k8_relat_1(k2_relat_1(A),B) = A ) ) ) ).
fof(t80_grfunc_1,axiom,
$true ).
fof(t81_grfunc_1,axiom,
$true ).
fof(t82_grfunc_1,axiom,
$true ).
fof(t83_grfunc_1,axiom,
$true ).
fof(t84_grfunc_1,axiom,
$true ).
fof(t85_grfunc_1,axiom,
$true ).
fof(t86_grfunc_1,axiom,
$true ).
fof(t87_grfunc_1,axiom,
! [A,B,C] :
( ( v1_relat_1(C)
& v1_funct_1(C) )
=> ( r2_hidden(A,k10_relat_1(C,B))
<=> ( r2_hidden(k4_tarski(A,k1_funct_1(C,A)),C)
& r2_hidden(k1_funct_1(C,A),B) ) ) ) ).
fof(t88_grfunc_1,axiom,
! [A,B] :
( ( v1_relat_1(B)
& v1_funct_1(B) )
=> ! [C] :
( ( v1_relat_1(C)
& v1_funct_1(C) )
=> ( ( r1_tarski(A,k1_relat_1(B))
& r1_tarski(B,C) )
=> k7_relat_1(B,A) = k7_relat_1(C,A) ) ) ) ).
fof(t89_grfunc_1,axiom,
! [A] :
( ( v1_relat_1(A)
& v1_funct_1(A) )
=> ! [B] :
( r2_hidden(B,k1_relat_1(A))
=> k7_relat_1(A,k1_tarski(B)) = k1_tarski(k4_tarski(B,k1_funct_1(A,B))) ) ) ).
%------------------------------------------------------------------------------