SET007 Axioms: SET007+1.ax
%------------------------------------------------------------------------------
% File : SET007+1 : TPTP v9.0.0. Released v3.4.0.
% Domain : Set Theory
% Axioms : Tarski Grothendieck Set Theory
% Version : [Urb08] axioms.
% English :
% Refs : [Mat90] Matuszewski (1990), Formalized Mathematics
% : [Urb07] Urban (2007), MPTP 0.2: Design, Implementation, and In
% : [Urb08] Urban (2006), Email to G. Sutcliffe
% Source : [Urb08]
% Names : tarski [Urb08]
% Status : Satisfiable
% Syntax : Number of formulae : 22 ( 13 unt; 0 def)
% Number of atoms : 62 ( 12 equ)
% Maximal formula atoms : 11 ( 2 avg)
% Number of connectives : 52 ( 12 ~; 1 |; 21 &)
% ( 11 <=>; 7 =>; 0 <=; 0 <~>)
% Maximal formula depth : 14 ( 4 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 6 ( 4 usr; 1 prp; 0-2 aty)
% Number of functors : 5 ( 5 usr; 1 con; 0-2 aty)
% Number of variables : 52 ( 47 !; 5 ?)
% SPC :
% Comments : The individual reference can be found in [Mat90] by looking for
% the name provided by [Urb08].
% : Translated by MPTP from the Mizar Mathematical Library 4.48.930.
% : These set theory axioms are used in encodings of problems in
% various domains, including ALG, CAT, GRP, LAT, SET, and TOP.
%------------------------------------------------------------------------------
fof(t1_tarski,axiom,
$true ).
fof(t2_tarski,axiom,
! [A,B] :
( ! [C] :
( r2_hidden(C,A)
<=> r2_hidden(C,B) )
=> A = B ) ).
fof(d1_tarski,axiom,
! [A,B] :
( B = k1_tarski(A)
<=> ! [C] :
( r2_hidden(C,B)
<=> C = A ) ) ).
fof(d2_tarski,axiom,
! [A,B,C] :
( C = k2_tarski(A,B)
<=> ! [D] :
( r2_hidden(D,C)
<=> ( D = A
| D = B ) ) ) ).
fof(t3_tarski,axiom,
$true ).
fof(t4_tarski,axiom,
$true ).
fof(d3_tarski,axiom,
! [A,B] :
( r1_tarski(A,B)
<=> ! [C] :
( r2_hidden(C,A)
=> r2_hidden(C,B) ) ) ).
fof(d4_tarski,axiom,
! [A,B] :
( B = k3_tarski(A)
<=> ! [C] :
( r2_hidden(C,B)
<=> ? [D] :
( r2_hidden(C,D)
& r2_hidden(D,A) ) ) ) ).
fof(t5_tarski,axiom,
$true ).
fof(t6_tarski,axiom,
$true ).
fof(t7_tarski,axiom,
! [A,B] :
~ ( r2_hidden(A,B)
& ! [C] :
~ ( r2_hidden(C,B)
& ! [D] :
~ ( r2_hidden(D,B)
& r2_hidden(D,C) ) ) ) ).
fof(d5_tarski,axiom,
! [A,B] : k4_tarski(A,B) = k2_tarski(k2_tarski(A,B),k1_tarski(A)) ).
fof(t8_tarski,axiom,
$true ).
fof(d6_tarski,axiom,
! [A,B] :
( r2_tarski(A,B)
<=> ? [C] :
( ! [D] :
~ ( r2_hidden(D,A)
& ! [E] :
~ ( r2_hidden(E,B)
& r2_hidden(k4_tarski(D,E),C) ) )
& ! [D] :
~ ( r2_hidden(D,B)
& ! [E] :
~ ( r2_hidden(E,A)
& r2_hidden(k4_tarski(E,D),C) ) )
& ! [D,E,F,G] :
( ( r2_hidden(k4_tarski(D,E),C)
& r2_hidden(k4_tarski(F,G),C) )
=> ( D = F
<=> E = G ) ) ) ) ).
fof(t9_tarski,axiom,
! [A] :
? [B] :
( r2_hidden(A,B)
& ! [C,D] :
( ( r2_hidden(C,B)
& r1_tarski(D,C) )
=> r2_hidden(D,B) )
& ! [C] :
~ ( r2_hidden(C,B)
& ! [D] :
~ ( r2_hidden(D,B)
& ! [E] :
( r1_tarski(E,C)
=> r2_hidden(E,D) ) ) )
& ! [C] :
~ ( r1_tarski(C,B)
& ~ r2_tarski(C,B)
& ~ r2_hidden(C,B) ) ) ).
fof(s1_tarski,axiom,
( ! [A,B,C] :
( ( p1_s1_tarski(A,B)
& p1_s1_tarski(A,C) )
=> B = C )
=> ? [A] :
! [B] :
( r2_hidden(B,A)
<=> ? [C] :
( r2_hidden(C,f1_s1_tarski)
& p1_s1_tarski(C,B) ) ) ) ).
fof(reflexivity_r1_tarski,axiom,
! [A,B] : r1_tarski(A,A) ).
fof(dt_k1_tarski,axiom,
$true ).
fof(dt_k2_tarski,axiom,
$true ).
fof(commutativity_k2_tarski,axiom,
! [A,B] : k2_tarski(A,B) = k2_tarski(B,A) ).
fof(dt_k3_tarski,axiom,
$true ).
fof(dt_k4_tarski,axiom,
$true ).
%------------------------------------------------------------------------------