TPTP Problem File: TOP051-1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : TOP051-1 : TPTP v9.0.0. Released v8.1.0.
% Domain : Topology (Knot theory)
% Problem : Goerlitz unknot
% Version : [FL14] axioms.
% English :
% Refs : [FL14] Fish & Lisitsa (2014), Detecting Unknots via Equationa
% : [Sma21] Smallbone (2021), Email to Geoff Sutcliffe
% Source : [Sma21]
% Names : goerlitz.p [WM89]
% Status : Unsatisfiable
% Rating : 0.05 v8.2.0, 0.08 v8.1.0
% Syntax : Number of clauses : 14 ( 14 unt; 0 nHn; 11 RR)
% Number of literals : 14 ( 14 equ; 1 neg)
% Maximal clause size : 1 ( 1 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 13 ( 13 usr; 11 con; 0-10 aty)
% Number of variables : 6 ( 0 sgn)
% SPC : CNF_UNS_RFO_PEQ_UEQ
% Comments : See https://cgi.csc.liv.ac.uk/~alexei/Unknot/
%------------------------------------------------------------------------------
cnf(involutory_quandle,axiom,
product(X,X) = X ).
cnf(involutory_quandle_01,axiom,
product(product(X,Y),Y) = X ).
cnf(involutory_quandle_02,axiom,
product(product(X,Y),Z) = product(product(X,Z),product(Y,Z)) ).
cnf(knot,axiom,
product(a1,a6) = a2 ).
cnf(knot_03,axiom,
product(a2,a7) = a3 ).
cnf(knot_04,axiom,
product(a3,a1) = a4 ).
cnf(knot_05,axiom,
product(a4,a10) = a5 ).
cnf(knot_06,axiom,
product(a5,a9) = a6 ).
cnf(knot_07,axiom,
product(a6,a2) = a7 ).
cnf(knot_08,axiom,
product(a7,a3) = a8 ).
cnf(knot_09,axiom,
product(a8,a6) = a9 ).
cnf(knot_10,axiom,
product(a9,a4) = a10 ).
cnf(knot_11,axiom,
product(a10,a5) = a11 ).
cnf(goal,negated_conjecture,
tuple(a1,a6,a5,a2,a7,a3,a4,a9,a10,a8) != tuple(a2,a7,a6,a3,a8,a4,a5,a10,a11,a9) ).
%------------------------------------------------------------------------------