TPTP Problem File: TOP022+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : TOP022+1 : TPTP v9.0.0. Released v3.1.0.
% Domain : Topology (Homotopy theory)
% Problem : Homotopy groups
% Version : [Shu96] axioms : Especial.
% English :
% Refs : [Mun75] Munkres (1975), Topology: A First Course
% : [Shu96] Shults (1996), Email to Geoff Sutcliffe
% Source : [Shu96]
% Names :
% Status : Theorem
% Rating : 0.13 v9.0.0, 0.00 v8.2.0, 0.07 v8.1.0, 0.00 v6.1.0, 0.04 v6.0.0, 0.25 v5.5.0, 0.04 v5.3.0, 0.09 v5.2.0, 0.00 v3.1.0
% Syntax : Number of formulae : 4 ( 0 unt; 0 def)
% Number of atoms : 12 ( 0 equ)
% Maximal formula atoms : 4 ( 3 avg)
% Number of connectives : 8 ( 0 ~; 0 |; 3 &)
% ( 2 <=>; 3 =>; 0 <=; 0 <~>)
% Maximal formula depth : 7 ( 6 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of predicates : 5 ( 5 usr; 0 prp; 1-4 aty)
% Number of functors : 2 ( 2 usr; 0 con; 1-2 aty)
% Number of variables : 14 ( 12 !; 2 ?)
% SPC : FOF_THM_RFO_NEQ
% Comments :
%------------------------------------------------------------------------------
%----What it means to be isomorphic
fof(isomorphic_groups_defn,axiom,
! [A,B] :
( isomorphic_groups(A,B)
<=> ? [F] : a_group_isomorphism_from_to(F,A,B) ) ).
%----The definition of path connectedness
fof(path_connected_defn,axiom,
! [X,X0,X1] :
( path_connected(X)
<=> ( ( a_member_of(X0,X)
& a_member_of(X1,X) )
=> ? [P] : a_path_from_to_in(P,X0,X1,X) ) ) ).
%----Theorem 2.1 in Chapter 8 of Munkres
fof(m_8_2_1,axiom,
! [A,X0,X1,X] :
( a_path_from_to_in(A,X0,X1,X)
=> a_group_isomorphism_from_to(alpha_hat(A),first_homotop_grp(X,X0),first_homotop_grp(X,X1)) ) ).
fof(m_8_2_2,conjecture,
! [X,X0,X1] :
( ( path_connected(X)
& a_member_of(X0,X)
& a_member_of(X1,X) )
=> isomorphic_groups(first_homotop_grp(X,X0),first_homotop_grp(X,X1)) ) ).
%------------------------------------------------------------------------------