TPTP Problem File: TOP014-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : TOP014-1 : TPTP v9.0.0. Released v1.0.0.
% Domain : Topology
% Problem : Properties of open & interior and closed & closure
% Version : [WM89] axioms : Incomplete.
% English : If A is open, the interior of A is A, and if A is closed, the
% closure of A is A.
% Refs : [WM89] Wick & McCune (1989), Automated Reasoning about Elemen
% Source : [WM89]
% Names : Problem 9 [WM89]
% Status : Satisfiable
% Rating : 0.00 v6.3.0, 0.33 v6.2.0, 0.20 v6.1.0, 0.00 v5.4.0, 0.78 v5.3.0, 0.71 v5.2.0, 0.86 v5.0.0, 0.75 v4.1.0, 0.71 v4.0.0, 0.75 v3.5.0, 0.71 v3.4.0, 0.83 v3.2.0, 0.60 v3.1.0, 0.57 v2.7.0, 0.40 v2.6.0, 0.50 v2.5.0, 0.83 v2.4.0, 1.00 v2.1.0, 0.00 v2.0.0
% Syntax : Number of clauses : 115 ( 2 unt; 26 nHn; 110 RR)
% Number of literals : 354 ( 0 equ; 213 neg)
% Maximal clause size : 8 ( 3 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 22 ( 22 usr; 0 prp; 1-4 aty)
% Number of functors : 38 ( 38 usr; 4 con; 0-5 aty)
% Number of variables : 357 ( 56 sgn)
% SPC : CNF_SAT_RFO_NEQ
% Comments : The axioms in this version are known to be incomplete. To
% obtain a proof of this theorem it may be necessary to add
% appropriate set theory axioms.
%--------------------------------------------------------------------------
%----Include Point-set topology axioms
include('Axioms/TOP001-0.ax').
%--------------------------------------------------------------------------
cnf(problem_9_142,negated_conjecture,
topological_space(cx,ct) ).
cnf(problem_9_143,negated_conjecture,
subset_sets(a,cx) ).
cnf(problem_9_144,negated_conjecture,
( open(a,cx,ct)
| equal_sets(a,interior(a,cx,ct))
| closed(a,cx,ct)
| equal_sets(a,closure(a,cx,ct)) ) ).
cnf(problem_9_145,negated_conjecture,
( open(a,cx,ct)
| equal_sets(a,interior(a,cx,ct))
| ~ closed(a,cx,ct)
| ~ equal_sets(a,closure(a,cx,ct)) ) ).
cnf(problem_9_146,negated_conjecture,
( ~ open(a,cx,ct)
| ~ equal_sets(a,interior(a,cx,ct))
| closed(a,cx,ct)
| equal_sets(a,closure(a,cx,ct)) ) ).
cnf(problem_9_147,negated_conjecture,
( ~ open(a,cx,ct)
| ~ equal_sets(a,interior(a,cx,ct))
| ~ closed(a,cx,ct)
| ~ equal_sets(a,closure(a,cx,ct)) ) ).
%--------------------------------------------------------------------------