TPTP Problem File: TOP011-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : TOP011-1 : TPTP v9.0.0. Released v1.0.0.
% Domain : Topology
% Problem : An alternative definition of top_of_basis
% Version : [WM89] axioms : Incomplete.
% English :
% Refs : [WM89] Wick & McCune (1989), Automated Reasoning about Elemen
% Source : [WM89]
% Names : Problem 6 [WM89]
% Status : Satisfiable
% Rating : 0.00 v5.4.0, 0.67 v5.3.0, 0.57 v5.2.0, 0.71 v5.0.0, 0.38 v4.1.0, 0.43 v4.0.0, 0.38 v3.5.0, 0.57 v3.4.0, 0.50 v3.2.0, 0.40 v3.1.0, 0.57 v2.7.0, 0.40 v2.6.0, 0.50 v2.4.0, 1.00 v2.2.1, 0.75 v2.2.0, 0.67 v2.1.0, 0.00 v2.0.0
% Syntax : Number of clauses : 112 ( 0 unt; 25 nHn; 107 RR)
% Number of literals : 343 ( 0 equ; 208 neg)
% Maximal clause size : 8 ( 3 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 22 ( 22 usr; 0 prp; 1-4 aty)
% Number of functors : 38 ( 38 usr; 4 con; 0-5 aty)
% Number of variables : 358 ( 56 sgn)
% SPC : CNF_SAT_RFO_NEQ
% Comments : The axioms in this version are known to be incomplete. To
% obtain a proof of this theorem it may be necessary to add
% appropriate set theory axioms.
%--------------------------------------------------------------------------
%----Include Point-set topology axioms
include('Axioms/TOP001-0.ax').
%--------------------------------------------------------------------------
cnf(problem_6_126,negated_conjecture,
( element_of_set(cu,top_of_basis(f))
| subset_collections(g,f) ) ).
cnf(problem_6_127,negated_conjecture,
( element_of_set(cu,top_of_basis(f))
| equal_sets(cu,union_of_members(g)) ) ).
cnf(problem_6_128,negated_conjecture,
( ~ element_of_set(cu,top_of_basis(f))
| ~ subset_collections(X,f)
| ~ equal_sets(cu,union_of_members(X)) ) ).
%--------------------------------------------------------------------------