TPTP Problem File: TOP009-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : TOP009-1 : TPTP v9.0.0. Released v1.0.0.
% Domain : Topology
% Problem : If Y is open in X, and A is open in Y, then A is open in X
% Version : [WM89] axioms : Incomplete.
% English :
% Refs : [WM89] Wick & McCune (1989), Automated Reasoning about Elemen
% Source : [WM89]
% Names : Problem 4 [WM89]
% Status : Satisfiable
% Rating : 0.00 v6.3.0, 0.33 v6.2.0, 0.40 v6.1.0, 0.33 v5.5.0, 0.25 v5.4.0, 0.78 v5.3.0, 0.86 v5.0.0, 0.75 v4.1.0, 0.71 v4.0.0, 0.75 v3.7.0, 0.88 v3.5.0, 0.71 v3.4.0, 0.83 v3.2.0, 0.80 v3.1.0, 0.86 v2.7.0, 0.80 v2.6.0, 0.75 v2.5.0, 1.00 v2.0.0
% Syntax : Number of clauses : 112 ( 3 unt; 23 nHn; 107 RR)
% Number of literals : 339 ( 0 equ; 206 neg)
% Maximal clause size : 8 ( 3 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 22 ( 22 usr; 0 prp; 1-4 aty)
% Number of functors : 39 ( 39 usr; 5 con; 0-5 aty)
% Number of variables : 357 ( 56 sgn)
% SPC : CNF_SAT_RFO_NEQ
% Comments : The axioms in this version are known to be incomplete. To
% obtain a proof of this theorem it may be necessary to add
% appropriate set theory axioms.
%--------------------------------------------------------------------------
%----Include Point-set topology axioms
include('Axioms/TOP001-0.ax').
%--------------------------------------------------------------------------
cnf(problem_4_120,negated_conjecture,
open(cy,cx,ct) ).
cnf(problem_4_121,negated_conjecture,
open(a,cy,subspace_topology(cx,ct,cy)) ).
cnf(problem_4_122,negated_conjecture,
~ open(a,cx,ct) ).
%--------------------------------------------------------------------------