TPTP Problem File: TOP007-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : TOP007-1 : TPTP v9.0.0. Released v1.0.0.
% Domain : Topology
% Problem : Property 1 of topological spaces
% Version : [WM89] axioms : Incomplete.
% English : If (cx,ct) is a topological space, A is a subset of X, and
% every point in A has a neighborhood U that is a subset of A,
% then A is open in (cx,ct).
% Refs : [WM89] Wick & McCune (1989), Automated Reasoning about Elemen
% Source : [WM89]
% Names : Problem 2 [WM89]
% Status : Satisfiable
% Rating : 0.00 v5.5.0, 0.25 v5.4.0, 0.78 v5.3.0, 0.86 v5.2.0, 0.71 v5.0.0, 0.62 v4.1.0, 0.57 v4.0.0, 0.62 v3.5.0, 0.57 v3.4.0, 0.83 v3.2.0, 0.80 v3.1.0, 0.86 v2.7.0, 0.80 v2.6.0, 1.00 v2.0.0
% Syntax : Number of clauses : 114 ( 3 unt; 23 nHn; 109 RR)
% Number of literals : 343 ( 0 equ; 208 neg)
% Maximal clause size : 8 ( 3 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 22 ( 22 usr; 0 prp; 1-4 aty)
% Number of functors : 39 ( 39 usr; 4 con; 0-5 aty)
% Number of variables : 359 ( 56 sgn)
% SPC : CNF_SAT_RFO_NEQ
% Comments : The axioms in this version are known to be incomplete. To
% obtain a proof of this theorem it may be necessary to add
% appropriate set theory axioms.
%--------------------------------------------------------------------------
%----Include Point-set topology axioms
include('Axioms/TOP001-0.ax').
%--------------------------------------------------------------------------
cnf(problem_2_112,negated_conjecture,
topological_space(cx,ct) ).
cnf(problem_2_113,negated_conjecture,
subset_sets(a,cx) ).
cnf(problem_2_114,negated_conjecture,
( ~ element_of_set(Y,a)
| neighborhood(f30(Y),Y,cx,ct) ) ).
cnf(problem_2_115,negated_conjecture,
( ~ element_of_set(Y,a)
| subset_sets(f30(Y),a) ) ).
cnf(problem_2_116,negated_conjecture,
~ open(a,cx,ct) ).
%--------------------------------------------------------------------------