TPTP Problem File: TOP005-2.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : TOP005-2 : TPTP v9.0.0. Released v1.0.0.
% Domain : Topology
% Problem : Topology generated by a basis forms a topological space, part 5
% Version : [WM89] axioms : Incomplete > Reduced & Augmented > Incomplete.
% English :
% Refs : [WM89] Wick & McCune (1989), Automated Reasoning about Elemen
% Source : [WM89]
% Names : Lemma 1e [WM89]
% Status : Unsatisfiable
% Rating : 0.09 v9.0.0, 0.00 v6.3.0, 0.14 v6.2.0, 0.11 v6.1.0, 0.14 v5.5.0, 0.25 v5.4.0, 0.20 v5.2.0, 0.10 v5.1.0, 0.09 v5.0.0, 0.14 v4.1.0, 0.12 v4.0.1, 0.20 v4.0.0, 0.14 v3.4.0, 0.25 v3.3.0, 0.33 v3.1.0, 0.17 v2.7.0, 0.12 v2.6.0, 0.33 v2.5.0, 0.20 v2.4.0, 0.00 v2.1.0, 0.12 v2.0.0
% Syntax : Number of clauses : 12 ( 2 unt; 2 nHn; 10 RR)
% Number of literals : 30 ( 0 equ; 17 neg)
% Maximal clause size : 4 ( 2 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of predicates : 4 ( 4 usr; 0 prp; 2-2 aty)
% Number of functors : 7 ( 7 usr; 2 con; 0-3 aty)
% Number of variables : 27 ( 0 sgn)
% SPC : CNF_UNS_RFO_NEQ_NHN
% Comments : The axioms in this version are known to be incomplete. To
% make them complete it is be necessary to add appropriate set
% theory axioms.
%--------------------------------------------------------------------------
%----Include Point-set topology axioms
% include('Axioms/TOP001-0.ax').
%--------------------------------------------------------------------------
%----Sigma (union of members).
cnf(union_of_members_1,axiom,
( ~ element_of_set(U,union_of_members(Vf))
| element_of_set(U,f1(Vf,U)) ) ).
cnf(union_of_members_2,axiom,
( ~ element_of_set(U,union_of_members(Vf))
| element_of_collection(f1(Vf,U),Vf) ) ).
%----Topology generated by a basis
cnf(topology_generated_37,axiom,
( ~ element_of_collection(U,top_of_basis(Vf))
| ~ element_of_set(X,U)
| element_of_set(X,f10(Vf,U,X)) ) ).
cnf(topology_generated_38,axiom,
( ~ element_of_collection(U,top_of_basis(Vf))
| ~ element_of_set(X,U)
| element_of_collection(f10(Vf,U,X),Vf) ) ).
cnf(topology_generated_39,axiom,
( ~ element_of_collection(U,top_of_basis(Vf))
| ~ element_of_set(X,U)
| subset_sets(f10(Vf,U,X),U) ) ).
cnf(topology_generated_40,axiom,
( element_of_collection(U,top_of_basis(Vf))
| element_of_set(f11(Vf,U),U) ) ).
cnf(topology_generated_41,axiom,
( element_of_collection(U,top_of_basis(Vf))
| ~ element_of_set(f11(Vf,U),Uu11)
| ~ element_of_collection(Uu11,Vf)
| ~ subset_sets(Uu11,U) ) ).
cnf(set_theory_19,axiom,
( subset_sets(X,Y)
| ~ element_of_set(U,X)
| element_of_set(U,Y) ) ).
cnf(set_theory_20,axiom,
( ~ subset_sets(X,Y)
| ~ element_of_collection(Y,Z)
| subset_sets(X,union_of_members(Z)) ) ).
cnf(set_theory_21,axiom,
( ~ subset_collections(X,Y)
| ~ element_of_collection(U,X)
| element_of_collection(U,Y) ) ).
%----Not used in the reduced version
% input_clause(lemma_1e_1,negated_conjecture,
% [++basis(cx,f)]).
cnf(lemma_1e_2,negated_conjecture,
subset_collections(g,top_of_basis(f)) ).
cnf(lemma_1e_3,negated_conjecture,
~ element_of_collection(union_of_members(g),top_of_basis(f)) ).
%--------------------------------------------------------------------------