TPTP Problem File: TOP004-2.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : TOP004-2 : TPTP v9.0.0. Released v1.0.0.
% Domain : Topology
% Problem : Topology generated by a basis forms a topological space, part 4
% Version : [WM89] axioms : Incomplete > Reduced & Augmented > Incomplete.
% English :
% Refs : [WM89] Wick & McCune (1989), Automated Reasoning about Elemen
% Source : [WM89]
% Names : Lemma 1d [WM89]
% Status : Unsatisfiable
% Rating : 0.00 v6.3.0, 0.14 v6.2.0, 0.00 v2.0.0
% Syntax : Number of clauses : 21 ( 5 unt; 1 nHn; 17 RR)
% Number of literals : 59 ( 0 equ; 38 neg)
% Maximal clause size : 6 ( 2 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of predicates : 5 ( 5 usr; 0 prp; 2-2 aty)
% Number of functors : 8 ( 8 usr; 2 con; 0-5 aty)
% Number of variables : 59 ( 6 sgn)
% SPC : CNF_UNS_RFO_NEQ_NHN
% Comments : The axioms in this version are known to be incomplete. To
% make them complete it is be necessary to add appropriate set
% theory axioms.
%--------------------------------------------------------------------------
%----Include Point-set topology axioms
% include('Axioms/TOP001-0.ax').
%--------------------------------------------------------------------------
%----Sigma (union of members).
cnf(union_of_members_3,axiom,
( element_of_set(U,union_of_members(Vf))
| ~ element_of_set(U,Uu1)
| ~ element_of_collection(Uu1,Vf) ) ).
%----Basis for a topology
cnf(basis_for_topology_28,axiom,
( ~ basis(X,Vf)
| equal_sets(union_of_members(Vf),X) ) ).
cnf(basis_for_topology_29,axiom,
( ~ basis(X,Vf)
| ~ element_of_set(Y,X)
| ~ element_of_collection(Vb1,Vf)
| ~ element_of_collection(Vb2,Vf)
| ~ element_of_set(Y,intersection_of_sets(Vb1,Vb2))
| element_of_set(Y,f6(X,Vf,Y,Vb1,Vb2)) ) ).
cnf(basis_for_topology_30,axiom,
( ~ basis(X,Vf)
| ~ element_of_set(Y,X)
| ~ element_of_collection(Vb1,Vf)
| ~ element_of_collection(Vb2,Vf)
| ~ element_of_set(Y,intersection_of_sets(Vb1,Vb2))
| element_of_collection(f6(X,Vf,Y,Vb1,Vb2),Vf) ) ).
cnf(basis_for_topology_31,axiom,
( ~ basis(X,Vf)
| ~ element_of_set(Y,X)
| ~ element_of_collection(Vb1,Vf)
| ~ element_of_collection(Vb2,Vf)
| ~ element_of_set(Y,intersection_of_sets(Vb1,Vb2))
| subset_sets(f6(X,Vf,Y,Vb1,Vb2),intersection_of_sets(Vb1,Vb2)) ) ).
%----Topology generated by a basis
cnf(topology_generated_37,axiom,
( ~ element_of_collection(U,top_of_basis(Vf))
| ~ element_of_set(X,U)
| element_of_set(X,f10(Vf,U,X)) ) ).
cnf(topology_generated_38,axiom,
( ~ element_of_collection(U,top_of_basis(Vf))
| ~ element_of_set(X,U)
| element_of_collection(f10(Vf,U,X),Vf) ) ).
cnf(topology_generated_39,axiom,
( ~ element_of_collection(U,top_of_basis(Vf))
| ~ element_of_set(X,U)
| subset_sets(f10(Vf,U,X),U) ) ).
cnf(topology_generated_40,axiom,
( element_of_collection(U,top_of_basis(Vf))
| element_of_set(f11(Vf,U),U) ) ).
cnf(topology_generated_41,axiom,
( element_of_collection(U,top_of_basis(Vf))
| ~ element_of_set(f11(Vf,U),Uu11)
| ~ element_of_collection(Uu11,Vf)
| ~ subset_sets(Uu11,U) ) ).
cnf(set_theory_12,axiom,
( ~ subset_sets(X,Y)
| ~ subset_sets(Y,Z)
| subset_sets(X,Z) ) ).
cnf(set_theory_13,axiom,
( ~ element_of_set(Z,intersection_of_sets(X,Y))
| element_of_set(Z,X) ) ).
cnf(set_theory_14,axiom,
( ~ element_of_set(Z,intersection_of_sets(X,Y))
| element_of_set(Z,Y) ) ).
cnf(set_theory_15,axiom,
( element_of_set(Z,intersection_of_sets(X,Y))
| ~ element_of_set(Z,X)
| ~ element_of_set(Z,Y) ) ).
cnf(set_theory_16,axiom,
( ~ subset_sets(X,Y)
| ~ subset_sets(U,V)
| subset_sets(intersection_of_sets(X,U),intersection_of_sets(Y,V)) ) ).
cnf(set_theory_17,axiom,
( ~ equal_sets(X,Y)
| ~ element_of_set(Z,X)
| element_of_set(Z,Y) ) ).
cnf(set_theory_18,axiom,
equal_sets(intersection_of_sets(X,Y),intersection_of_sets(Y,X)) ).
cnf(lemma_1d_1,negated_conjecture,
basis(cx,f) ).
cnf(lemma_1d_2,negated_conjecture,
element_of_collection(U,top_of_basis(f)) ).
cnf(lemma_1d_3,negated_conjecture,
element_of_collection(V,top_of_basis(f)) ).
cnf(lemma_1d_4,negated_conjecture,
~ element_of_collection(intersection_of_sets(U,V),top_of_basis(f)) ).
%--------------------------------------------------------------------------