TPTP Problem File: TOP004-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : TOP004-1 : TPTP v9.0.0. Released v1.0.0.
% Domain : Topology
% Problem : Topology generated by a basis forms a topological space, part 4
% Version : [WM89] axioms : Incomplete.
% English :
% Refs : [WM89] Wick & McCune (1989), Automated Reasoning about Elemen
% Source : [WM89]
% Names : Lemma 1d [WM89]
% Status : Unsatisfiable
% Rating : 0.00 v7.1.0, 0.17 v7.0.0, 0.12 v6.3.0, 0.14 v6.2.0, 0.00 v5.0.0, 0.07 v4.1.0, 0.00 v2.0.0
% Syntax : Number of clauses : 113 ( 4 unt; 23 nHn; 106 RR)
% Number of literals : 340 ( 0 equ; 206 neg)
% Maximal clause size : 8 ( 3 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 22 ( 22 usr; 0 prp; 1-4 aty)
% Number of functors : 37 ( 37 usr; 3 con; 0-5 aty)
% Number of variables : 361 ( 60 sgn)
% SPC : CNF_UNS_RFO_NEQ_NHN
% Comments : The axioms in this version are known to be incomplete. To
% obtain a proof of this theorem it may be necessary to add
% appropriate set theory axioms.
%--------------------------------------------------------------------------
%----Include Point-set topology axioms
include('Axioms/TOP001-0.ax').
%--------------------------------------------------------------------------
cnf(lemma_1d_1,negated_conjecture,
basis(cx,f) ).
cnf(lemma_1d_2,negated_conjecture,
element_of_collection(U,top_of_basis(f)) ).
cnf(lemma_1d_3,negated_conjecture,
element_of_collection(V,top_of_basis(f)) ).
cnf(lemma_1d_4,negated_conjecture,
~ element_of_collection(intersection_of_sets(U,V),top_of_basis(f)) ).
%--------------------------------------------------------------------------