TPTP Problem File: TOP002-2.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : TOP002-2 : TPTP v9.0.0. Released v1.0.0.
% Domain : Topology
% Problem : Topology generated by a basis forms a topological space, part 2
% Version : [WM89] axioms : Incomplete > Reduced & Augmented > Incomplete.
% English :
% Refs : [WM89] Wick & McCune (1989), Automated Reasoning about Elemen
% Source : [WM89]
% Names : Lemma 1b [WM89]
% Status : Unsatisfiable
% Rating : 0.00 v6.3.0, 0.14 v6.2.0, 0.00 v2.0.0
% Syntax : Number of clauses : 3 ( 2 unt; 1 nHn; 2 RR)
% Number of literals : 4 ( 0 equ; 2 neg)
% Maximal clause size : 2 ( 1 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of predicates : 2 ( 2 usr; 0 prp; 2-2 aty)
% Number of functors : 4 ( 4 usr; 2 con; 0-2 aty)
% Number of variables : 3 ( 1 sgn)
% SPC : CNF_UNS_RFO_NEQ_NHN
% Comments : The axioms in this version are known to be incomplete. To
% make them complete it is be necessary to add appropriate set
% theory axioms.
%--------------------------------------------------------------------------
%----Include Point-set topology axioms
% include('Axioms/TOP001-0.ax').
%--------------------------------------------------------------------------
%----Topology generated by a basis
cnf(topology_generated_40,axiom,
( element_of_collection(U,top_of_basis(Vf))
| element_of_set(f11(Vf,U),U) ) ).
cnf(set_theory_6,axiom,
~ element_of_set(X,empty_set) ).
%----Not used in the reduced version
% input_clause(lemma_1b_1,negated_conjecture,
% [++basis(cx,f)]).
cnf(lemma_1b_2,negated_conjecture,
~ element_of_collection(empty_set,top_of_basis(f)) ).
%--------------------------------------------------------------------------