TPTP Problem File: TOP001-2.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : TOP001-2 : TPTP v9.0.0. Released v1.0.0.
% Domain : Topology
% Problem : Topology generated by a basis forms a topological space, part 1
% Version : [WM89] axioms : Incomplete > Reduced & Augmented > Incomplete.
% English :
% Refs : [WM89] Wick & McCune (1989), Automated Reasoning about Elemen
% Source : [WM89]
% Names : Lemma 1a [WM89]
% Status : Unsatisfiable
% Rating : 0.00 v6.3.0, 0.14 v6.2.0, 0.00 v5.4.0, 0.10 v5.1.0, 0.00 v5.0.0, 0.07 v4.1.0, 0.00 v2.7.0, 0.12 v2.6.0, 0.00 v2.4.0, 0.00 v2.1.0, 0.00 v2.0.0
% Syntax : Number of clauses : 13 ( 3 unt; 1 nHn; 11 RR)
% Number of literals : 27 ( 0 equ; 14 neg)
% Maximal clause size : 3 ( 2 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 5 ( 5 usr; 0 prp; 2-2 aty)
% Number of functors : 7 ( 7 usr; 2 con; 0-3 aty)
% Number of variables : 25 ( 0 sgn)
% SPC : CNF_UNS_RFO_NEQ_NHN
% Comments : The axioms in this version are known to be incomplete. To
% make them complete it is be necessary to add appropriate set
% theory axioms.
%--------------------------------------------------------------------------
%----Include Point-set topology axioms
% include('Axioms/TOP001-0.ax').
%--------------------------------------------------------------------------
%----Sigma (union of members).
cnf(union_of_members_1,axiom,
( ~ element_of_set(U,union_of_members(Vf))
| element_of_set(U,f1(Vf,U)) ) ).
cnf(union_of_members_2,axiom,
( ~ element_of_set(U,union_of_members(Vf))
| element_of_collection(f1(Vf,U),Vf) ) ).
cnf(union_of_members_3,axiom,
( element_of_set(U,union_of_members(Vf))
| ~ element_of_set(U,Uu1)
| ~ element_of_collection(Uu1,Vf) ) ).
%----Basis for a topology
cnf(basis_for_topology_28,axiom,
( ~ basis(X,Vf)
| equal_sets(union_of_members(Vf),X) ) ).
%----Topology generated by a basis
cnf(topology_generated_37,axiom,
( ~ element_of_collection(U,top_of_basis(Vf))
| ~ element_of_set(X,U)
| element_of_set(X,f10(Vf,U,X)) ) ).
cnf(topology_generated_38,axiom,
( ~ element_of_collection(U,top_of_basis(Vf))
| ~ element_of_set(X,U)
| element_of_collection(f10(Vf,U,X),Vf) ) ).
cnf(set_theory_1,axiom,
subset_sets(X,X) ).
cnf(set_theory_2,axiom,
( ~ subset_sets(X,Y)
| ~ element_of_set(U,X)
| element_of_set(U,Y) ) ).
cnf(set_theory_3,axiom,
( ~ equal_sets(X,Y)
| subset_sets(X,Y) ) ).
cnf(set_theory_4,axiom,
( subset_sets(X,Y)
| element_of_set(in_1st_set(X,Y),X) ) ).
cnf(set_theory_5,axiom,
( subset_sets(X,Y)
| ~ element_of_set(in_1st_set(X,Y),Y) ) ).
cnf(lemma_1a_1,negated_conjecture,
basis(cx,f) ).
cnf(lemma_1a_2,negated_conjecture,
~ subset_sets(union_of_members(top_of_basis(f)),cx) ).
%--------------------------------------------------------------------------