TPTP Problem File: SYP006^1.p

View Solutions - Solve Problem

%------------------------------------------------------------------------------
% File     : SYP006^1 : TPTP v9.2.1. Released v9.2.0.
% Domain   : Syntactic
% Problem  : Correctness of the operator for sets of size 2
% Version  : Especial.
% English  : Defines a swap operator on the type of sets of size 2, using the 
%            choice operator and in each case returning the other element.

% Refs     : [RRB23] Rothgang et al. (2023), Theorem Proving in Dependently
%          : [Rot25] Rothgang (2025), Email to Geoff Sutcliffe
%          : [RK+25] Ranalter et al. (2025), The Dependently Typed Higher-O
% Source   : [Rot25]
% Names    : ChoiceBasic/fin2swap1.p [Rot25]

% Status   : Theorem
% Rating   : ? v9.2.0
% Syntax   : Number of formulae    :   12 (   3 unt;   8 typ;   1 def)
%            Number of atoms       :    4 (   4 equ;   0 cnn)
%            Maximal formula atoms :    1 (   1 avg)
%            Number of connectives :   45 (   2   ~;   0   |;   0   &;  41   @)
%                                         (   0 <=>;   2  =>;   0  <=;   0 <~>)
%            Maximal formula depth :    9 (   4 avg)
%            Number of types       :    2 (   1 usr)
%            Number of type decls  :    8 (   0 !>P;   3 !>D)
%            Number of type conns  :    7 (   7   >;   0   *;   0   +;   0  <<)
%            Number of symbols     :    8 (   7 usr;   1 con; 0-2 aty)
%            Number of variables   :   14 (   1   ^;   9   !;   0   ?;  14   :)
%                                         (   3  !>;   0  ?*;   0  @-;   1  @+)
% SPC      : DH0_THM_EQU_NAR

% Comments :
%------------------------------------------------------------------------------
thf(nat_type,type,
    nat: $tType ).

thf(zero_type,type,
    zero: nat ).

thf(suc_type,type,
    suc: nat > nat ).

thf(plus_type,type,
    plus: nat > nat > nat ).

thf(plus_suc,axiom,
    ! [X: nat,Y: nat] :
      ( ( plus @ ( suc @ X ) @ Y )
      = ( suc @ ( plus @ X @ Y ) ) ) ).

thf(fin_type,type,
    fin: nat > $tType ).

thf(f1_type,type,
    f1: 
      !>[A: nat] : ( fin @ ( suc @ A ) ) ).

thf(fs_type,type,
    fs: 
      !>[A: nat] : ( ( fin @ A ) > ( fin @ ( suc @ A ) ) ) ).

thf(fin_elim,axiom,
    ! [P: !>[N: nat] : ( ( fin @ ( suc @ N ) ) > $o )] :
      ( ! [N: nat] : ( P @ N @ ( f1 @ N ) )
     => ( ! [N: nat,F: fin @ N] : ( P @ N @ ( fs @ N @ F ) )
       => ! [N: nat,F: fin @ ( suc @ N )] : ( P @ N @ F ) ) ) ).

thf(swap_type,type,
    swap: ( fin @ ( suc @ ( suc @ zero ) ) ) > ( fin @ ( suc @ ( suc @ zero ) ) ) ).

thf(swap_def,definition,
    ( swap
    = ( ^ [X: fin @ ( suc @ ( suc @ zero ) )] :
        @+[Y: fin @ ( suc @ ( suc @ zero ) )] : ( X != Y ) ) ) ).

thf(fin2swap1,conjecture,
    ! [X: fin @ ( suc @ ( suc @ zero ) )] :
      ( ( swap @ X )
     != X ) ).

%------------------------------------------------------------------------------