TPTP Problem File: SYP003^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SYP003^1 : TPTP v9.2.1. Released v9.2.0.
% Domain : Syntactic
% Problem : Axiom of (higher-order) choice for arbitrary types.
% Version : Especial.
% English :
% Refs : [RRB23] Rothgang et al. (2023), Theorem Proving in Dependently
% : [Rot25] Rothgang (2025), Email to Geoff Sutcliffe
% : [RK+25] Ranalter et al. (2025), The Dependently Typed Higher-O
% Source : [Rot25]
% Names : ChoiceBasic/dskolem1.p [Rot25]
% Status : Theorem
% Rating : ? v9.2.0
% Syntax : Number of formulae : 4 ( 0 unt; 3 typ; 0 def)
% Number of atoms : 2 ( 0 equ; 0 cnn)
% Maximal formula atoms : 2 ( 2 avg)
% Number of connectives : 9 ( 0 ~; 0 |; 0 &; 8 @)
% ( 0 <=>; 1 =>; 0 <=; 0 <~>)
% Maximal formula depth : 6 ( 6 avg)
% Number of types : 2 ( 1 usr)
% Number of type decls : 3 ( 0 !>P; 2 !>D)
% Number of type conns : 2 ( 2 >; 0 *; 0 +; 0 <<)
% Number of symbols : 2 ( 2 usr; 0 con; 1-2 aty)
% Number of variables : 6 ( 0 ^; 2 !; 2 ?; 6 :)
% ( 2 !>; 0 ?*; 0 @-; 0 @+)
% SPC : DH0_THM_NEQ_NAR
% Comments :
%------------------------------------------------------------------------------
thf(a_type,type,
a: $tType ).
thf(b_type,type,
b: a > $tType ).
thf(p_type,type,
p:
!>[X: a] : ( ( b @ X ) > $o ) ).
thf(dskolem1,conjecture,
( ! [X: a] :
? [Y: b @ X] : ( p @ X @ Y )
=> ? [F: !>[N: a] : ( b @ N )] :
! [X: a] : ( p @ X @ ( F @ X ) ) ) ).
%------------------------------------------------------------------------------