TPTP Problem File: SYP002^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SYP002^1 : TPTP v9.2.1. Released v9.2.0.
% Domain : Syntactic
% Problem : At least two distinct elements in (fin 2)
% Version : Especial.
% English : There are at least two distinct elements in (fin 2) and choice
% can indentify them.
% Refs : [RRB23] Rothgang et al. (2023), Theorem Proving in Dependently
% : [Rot25] Rothgang (2025), Email to Geoff Sutcliffe
% : [RK+25] Ranalter et al. (2025), The Dependently Typed Higher-O
% Source : [Rot25]
% Names : ChoiceBasic/dchoice_choice_nq.p [Rot25]
% Status : Theorem
% Rating : ? v9.2.0
% Syntax : Number of formulae : 8 ( 1 unt; 6 typ; 0 def)
% Number of atoms : 5 ( 5 equ; 0 cnn)
% Maximal formula atoms : 2 ( 2 avg)
% Number of connectives : 33 ( 5 ~; 0 |; 1 &; 27 @)
% ( 0 <=>; 0 =>; 0 <=; 0 <~>)
% Maximal formula depth : 4 ( 4 avg)
% Number of types : 1 ( 1 usr)
% Number of type decls : 6 ( 0 !>P; 2 !>D)
% Number of type conns : 3 ( 3 >; 0 *; 0 +; 0 <<)
% Number of symbols : 6 ( 5 usr; 1 con; 0-2 aty)
% Number of variables : 6 ( 0 ^; 2 !; 0 ?; 6 :)
% ( 2 !>; 0 ?*; 0 @-; 2 @+)
% SPC : DH0_THM_EQU_NAR
% Comments :
%------------------------------------------------------------------------------
thf(nat_type,type,
nat: $tType ).
thf(zer_type,type,
zer: nat ).
thf(suc_type,type,
suc: nat > nat ).
thf(fin_type,type,
fin: nat > $tType ).
thf(zerf_type,type,
zerf:
!>[N: nat] : ( fin @ ( suc @ N ) ) ).
thf(sucf_type,type,
sucf:
!>[N: nat] : ( ( fin @ N ) > ( fin @ ( suc @ N ) ) ) ).
thf(zerf_neq_sucf,axiom,
! [N: nat,X: fin @ N] :
( ( zerf @ N )
!= ( sucf @ N @ X ) ) ).
thf(dchoiceex5,conjecture,
( ( ( @+[X: fin @ ( suc @ ( suc @ zer ) )] :
( X
!= ( zerf @ ( suc @ zer ) ) ) )
!= ( zerf @ ( suc @ zer ) ) )
& ( ( @+[X: fin @ ( suc @ ( suc @ zer ) )] :
( X
!= ( sucf @ ( suc @ zer ) @ ( zerf @ zer ) ) ) )
!= ( sucf @ ( suc @ zer ) @ ( zerf @ zer ) ) ) ) ).
%------------------------------------------------------------------------------