TPTP Problem File: SYP000^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SYP000^1 : TPTP v9.2.1. Released v9.2.0.
% Domain : Syntactic
% Problem : Choice respects identity for the type (fin 1)
% Version : Especial.
% English : Picking an element using the choice operator, such that it is
% equal to a certain element of type (fin 1), yields this exact
% element.
% Refs : [RRB23] Rothgang et al. (2023), Theorem Proving in Dependently
% : [Rot25] Rothgang (2025), Email to Geoff Sutcliffe
% : [RK+25] Ranalter et al. (2025), The Dependently Typed Higher-O
% Source : [Rot25]
% Names : ChoiceBasic/dchoice_choice_eq1.p [Rot25]
% Status : Theorem
% Rating : ? v9.2.0
% Syntax : Number of formulae : 7 ( 1 unt; 6 typ; 0 def)
% Number of atoms : 2 ( 2 equ; 0 cnn)
% Maximal formula atoms : 1 ( 2 avg)
% Number of connectives : 9 ( 0 ~; 0 |; 0 &; 9 @)
% ( 0 <=>; 0 =>; 0 <=; 0 <~>)
% Maximal formula depth : 1 ( 1 avg)
% Number of types : 1 ( 1 usr)
% Number of type decls : 6 ( 0 !>P; 2 !>D)
% Number of type conns : 3 ( 3 >; 0 *; 0 +; 0 <<)
% Number of symbols : 6 ( 5 usr; 1 con; 0-2 aty)
% Number of variables : 3 ( 0 ^; 0 !; 0 ?; 3 :)
% ( 2 !>; 0 ?*; 0 @-; 1 @+)
% SPC : DH0_THM_EQU_NAR
% Comments :
%------------------------------------------------------------------------------
thf(nat_type,type,
nat: $tType ).
thf(zer_type,type,
zer: nat ).
thf(suc_type,type,
suc: nat > nat ).
thf(fin_type,type,
fin: nat > $tType ).
thf(zerf_type,type,
zerf:
!>[N: nat] : ( fin @ ( suc @ N ) ) ).
thf(sucf_type,type,
sucf:
!>[N: nat] : ( ( fin @ N ) > ( fin @ ( suc @ N ) ) ) ).
thf(dchoiceex3,conjecture,
( ( @+[X: fin @ ( suc @ zer )] :
( X
= ( zerf @ zer ) ) )
= ( zerf @ zer ) ) ).
%------------------------------------------------------------------------------