TPTP Problem File: SYO999^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SYO999^1 : TPTP v9.2.1. Released v9.2.0.
% Domain : Syntactic
% Problem : Definition of choice for finite sets of anything size N
% Version : Especial.
% English : Given there is an element x of type (fin N) that is in the
% predicate p, the choice operator can find an element of fin N
% that makes said predicate true.
% Refs : [RRB23] Rothgang et al. (2023), Theorem Proving in Dependently
% : [Rot25] Rothgang (2025), Email to Geoff Sutcliffe
% : [RK+25] Ranalter et al. (2025), The Dependently Typed Higher-O
% Source : [Rot25]
% Names : ChoiceBasic/dchoice_choice_def3.p [Rot25]
% Status : Theorem
% Rating : ? v9.2.0
% Syntax : Number of formulae : 5 ( 1 unt; 3 typ; 0 def)
% Number of atoms : 3 ( 0 equ; 0 cnn)
% Maximal formula atoms : 2 ( 1 avg)
% Number of connectives : 9 ( 0 ~; 0 |; 0 &; 9 @)
% ( 0 <=>; 0 =>; 0 <=; 0 <~>)
% Maximal formula depth : 6 ( 6 avg)
% Number of types : 2 ( 1 usr)
% Number of type decls : 3 ( 0 !>P; 1 !>D)
% Number of type conns : 2 ( 2 >; 0 *; 0 +; 0 <<)
% Number of symbols : 2 ( 2 usr; 0 con; 1-2 aty)
% Number of variables : 5 ( 0 ^; 2 !; 1 ?; 5 :)
% ( 1 !>; 0 ?*; 0 @-; 1 @+)
% SPC : DH0_THM_NEQ_NAR
% Comments :
%------------------------------------------------------------------------------
thf(a_type,type,
a: $tType ).
thf(b_type,type,
b: a > $tType ).
thf(p_type,type,
p:
!>[A: a] : ( ( b @ A ) > $o ) ).
thf(pax,axiom,
! [A: a] :
? [B: b @ A] : ( p @ A @ B ) ).
thf(conj,conjecture,
! [A: a] :
( p @ A
@ @+[X: b @ A] : ( p @ A @ X ) ) ).
%------------------------------------------------------------------------------