TPTP Problem File: SYO998^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SYO998^1 : TPTP v9.2.1. Released v9.2.0.
% Domain : Syntactic
% Problem : Definition of choice for finite sets of size N
% Version : Especial.
% English : Given there is an element x of type (fin N) that is in the
% predicate p, the choice operator can find an element of fin N
% that makes said predicate true.
% Refs : [RRB23] Rothgang et al. (2023), Theorem Proving in Dependently
% : [Rot25] Rothgang (2025), Email to Geoff Sutcliffe
% : [RK+25] Ranalter et al. (2025), The Dependently Typed Higher-O
% Source : [Rot25]
% Names : ChoiceBasic/dchoice_choice_def2.p [Rot25]
% Status : Theorem
% Rating : ? v9.2.0
% Syntax : Number of formulae : 10 ( 2 unt; 7 typ; 0 def)
% Number of atoms : 4 ( 1 equ; 0 cnn)
% Maximal formula atoms : 2 ( 1 avg)
% Number of connectives : 20 ( 1 ~; 0 |; 0 &; 19 @)
% ( 0 <=>; 0 =>; 0 <=; 0 <~>)
% Maximal formula depth : 7 ( 5 avg)
% Number of types : 2 ( 1 usr)
% Number of type decls : 7 ( 0 !>P; 3 !>D)
% Number of type conns : 4 ( 4 >; 0 *; 0 +; 0 <<)
% Number of symbols : 7 ( 6 usr; 1 con; 0-2 aty)
% Number of variables : 7 ( 0 ^; 3 !; 0 ?; 7 :)
% ( 3 !>; 0 ?*; 0 @-; 1 @+)
% SPC : DH0_THM_EQU_NAR
% Comments :
%------------------------------------------------------------------------------
thf(nat_type,type,
nat: $tType ).
thf(zer_type,type,
zer: nat ).
thf(suc_type,type,
suc: nat > nat ).
thf(fin_type,type,
fin: nat > $tType ).
thf(zerf_type,type,
zerf:
!>[N: nat] : ( fin @ ( suc @ N ) ) ).
thf(sucf_type,type,
sucf:
!>[N: nat] : ( ( fin @ N ) > ( fin @ ( suc @ N ) ) ) ).
thf(zer_not_suc,axiom,
! [N: nat] :
( zer
!= ( suc @ N ) ) ).
thf(p_type,type,
p:
!>[N: nat] : ( ( fin @ N ) > $o ) ).
thf(pax,axiom,
! [N: nat] : ( p @ ( suc @ N ) @ ( zerf @ N ) ) ).
thf(dchoiceex2,conjecture,
! [N: nat] :
( p @ ( suc @ N )
@ @+[X: fin @ ( suc @ N )] : ( p @ ( suc @ N ) @ X ) ) ).
%------------------------------------------------------------------------------