TPTP Problem File: SYO997^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SYO997^1 : TPTP v9.2.1. Released v9.2.0.
% Domain : Syntactic
% Problem : Definition of choice for finite sets of size 2
% Version : Especial.
% English : Given there is an element x of type (fin 2) that is in the
% predicate p, the choice operator can find an element of fin 2
% that makes said predicate true.
% Refs : [RRB23] Rothgang et al. (2023), Theorem Proving in Dependently
% : [Rot25] Rothgang (2025), Email to Geoff Sutcliffe
% : [RK+25] Ranalter et al. (2025), The Dependently Typed Higher-O
% Source : [Rot25]
% Names : ChoiceBasic/dchoice_choice_def1.p [Rot25]
% Status : Theorem
% Rating : ? v9.2.0
% Syntax : Number of formulae : 10 ( 1 unt; 7 typ; 0 def)
% Number of atoms : 3 ( 0 equ; 0 cnn)
% Maximal formula atoms : 2 ( 1 avg)
% Number of connectives : 33 ( 0 ~; 0 |; 0 &; 31 @)
% ( 0 <=>; 2 =>; 0 <=; 0 <~>)
% Maximal formula depth : 9 ( 5 avg)
% Number of types : 2 ( 1 usr)
% Number of type decls : 7 ( 0 !>P; 3 !>D)
% Number of type conns : 5 ( 5 >; 0 *; 0 +; 0 <<)
% Number of symbols : 6 ( 6 usr; 1 con; 0-2 aty)
% Number of variables : 11 ( 0 ^; 6 !; 1 ?; 11 :)
% ( 3 !>; 0 ?*; 0 @-; 1 @+)
% SPC : DH0_THM_NEQ_NAR
% Comments :
%------------------------------------------------------------------------------
thf(nat_type,type,
nat: $tType ).
thf(zero_type,type,
zero: nat ).
thf(suc_type,type,
suc: nat > nat ).
thf(fin_type,type,
fin: nat > $tType ).
thf(f1_type,type,
f1:
!>[A: nat] : ( fin @ ( suc @ A ) ) ).
thf(fs_type,type,
fs:
!>[A: nat] : ( ( fin @ A ) > ( fin @ ( suc @ A ) ) ) ).
thf(fin_elim,axiom,
! [P: !>[N: nat] : ( ( fin @ ( suc @ N ) ) > $o )] :
( ! [N: nat] : ( P @ N @ ( f1 @ N ) )
=> ( ! [N: nat,F: fin @ N] : ( P @ N @ ( fs @ N @ F ) )
=> ! [N: nat,F: fin @ ( suc @ N )] : ( P @ N @ F ) ) ) ).
thf(p_type,type,
p: ( fin @ ( suc @ ( suc @ zero ) ) ) > $o ).
thf(pex,axiom,
? [X: fin @ ( suc @ ( suc @ zero ) )] : ( p @ X ) ).
thf(pch,conjecture,
( p
@ @+[X: fin @ ( suc @ ( suc @ zero ) )] : ( p @ X ) ) ).
%------------------------------------------------------------------------------