TPTP Problem File: SYO932^10.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SYO932^10 : TPTP v9.0.0. Bugfixed v5.0.0.
% Domain : Logical Calculi (Modal logic)
% Problem : The converse Barcan formula is valid in quantified modal logic K
% Version : [Ben10] axioms.
% English :
% Refs : [Ben10a] Benzmueller (2010), Email to Geoff Sutcliffe
% : [Ben10b] Benzmueller (2010), Simple Type Theory as a Framework
% Source : [Ben10a]
% Names : Problem 33 [Ben10b]
% Status : Theorem
% Rating : 0.12 v9.0.0, 0.10 v8.2.0, 0.23 v8.1.0, 0.18 v7.5.0, 0.14 v7.4.0, 0.11 v7.2.0, 0.00 v7.1.0, 0.25 v7.0.0, 0.14 v6.4.0, 0.17 v6.3.0, 0.20 v6.2.0, 0.14 v5.5.0, 0.17 v5.4.0, 0.20 v5.3.0, 0.40 v5.2.0, 0.20 v5.0.0
% Syntax : Number of formulae : 66 ( 31 unt; 34 typ; 31 def)
% Number of atoms : 102 ( 36 equ; 0 cnn)
% Maximal formula atoms : 10 ( 3 avg)
% Number of connectives : 134 ( 4 ~; 4 |; 8 &; 110 @)
% ( 0 <=>; 8 =>; 0 <=; 0 <~>)
% Maximal formula depth : 8 ( 1 avg)
% Number of types : 3 ( 1 usr)
% Number of type conns : 172 ( 172 >; 0 *; 0 +; 0 <<)
% Number of symbols : 39 ( 37 usr; 5 con; 0-3 aty)
% Number of variables : 86 ( 51 ^; 29 !; 6 ?; 86 :)
% SPC : TH0_THM_EQU_NAR
% Comments :
% Bugfixes : v5.0.0 - Bugfix to LCL013^0.ax
%------------------------------------------------------------------------------
%----Include the definitions for quantified multimodal logic
include('Axioms/LCL013^0.ax').
%------------------------------------------------------------------------------
%----Provide a constant for accesibility relation r
thf(r,type,
r: $i > $i > $o ).
thf(p,type,
p: mu > $i > $o ).
thf(ex2b,conjecture,
( mvalid
@ ( mimplies
@ ( mbox @ r
@ ( mforall_ind
@ ^ [X: mu] : ( p @ X ) ) )
@ ( mforall_ind
@ ^ [X: mu] : ( mbox @ r @ ( p @ X ) ) ) ) ) ).
%------------------------------------------------------------------------------