TPTP Problem File: SYO925_1.013.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SYO925_1.013 : TPTP v9.0.0. Released v9.0.0.
% Domain : Syntactic
% Problem : KSP problem s4_s5_n.0013
% Version : Especial.
% English :
% Refs : [BHS00] Balsiger et al. (2000), A Benchmark Method for the Pro
% : [NH+22] Nalon et al. (2022), Local Reductions for the Modal Cu
% : [Nal22] Nalon (2022), Email to Geoff Sutcliffe
% : [NH+23] Nalon et al. (2023), Buy One Get 14 Free: Evaluating L
% Source : [Nal22]
% Names : s4_s5_n.0013 [Nal22]
% Status : CounterSatisfiable
% Rating : 0.67 v9.0.0
% Syntax : Number of formulae : 76 ( 0 unt; 75 typ; 0 def)
% Number of atoms : 292 ( 0 equ)
% Maximal formula atoms : 292 ( 292 avg)
% Number of connectives : 587 ( 147 ~; 146 |; 144 &)
% ( 0 <=>; 1 =>; 0 <=; 0 <~>)
% ( 149 {.}; 0 {#})
% Maximal formula depth : 154 ( 154 avg)
% Maximal term depth : 0 ( 0 avg)
% Number of types : 1 ( 0 usr)
% Number of type conns : 0 ( 0 >; 0 *; 0 +; 0 <<)
% Number of predicates : 75 ( 75 usr; 75 prp; 0-0 aty)
% Number of functors : 0 ( 0 usr; 0 con; --- aty)
% Number of variables : 0 (; 0 !; 0 ?; 0 :)
% SPC : NX0_CSA_PRP_NEQ_NAR
% Comments :
%------------------------------------------------------------------------------
tff('s4_s5_n.0013',logic,
$modal ==
[ $modalities == $modal_system_S4 ] ).
tff(false_decl,type,
false: $o ).
tff(p1_decl,type,
p1: $o ).
tff(p10_decl,type,
p10: $o ).
tff(p11_decl,type,
p11: $o ).
tff(p12_decl,type,
p12: $o ).
tff(p13_decl,type,
p13: $o ).
tff(p14_decl,type,
p14: $o ).
tff(p15_decl,type,
p15: $o ).
tff(p16_decl,type,
p16: $o ).
tff(p17_decl,type,
p17: $o ).
tff(p18_decl,type,
p18: $o ).
tff(p19_decl,type,
p19: $o ).
tff(p2_decl,type,
p2: $o ).
tff(p20_decl,type,
p20: $o ).
tff(p21_decl,type,
p21: $o ).
tff(p22_decl,type,
p22: $o ).
tff(p23_decl,type,
p23: $o ).
tff(p24_decl,type,
p24: $o ).
tff(p25_decl,type,
p25: $o ).
tff(p26_decl,type,
p26: $o ).
tff(p27_decl,type,
p27: $o ).
tff(p28_decl,type,
p28: $o ).
tff(p29_decl,type,
p29: $o ).
tff(p3_decl,type,
p3: $o ).
tff(p30_decl,type,
p30: $o ).
tff(p31_decl,type,
p31: $o ).
tff(p32_decl,type,
p32: $o ).
tff(p33_decl,type,
p33: $o ).
tff(p34_decl,type,
p34: $o ).
tff(p35_decl,type,
p35: $o ).
tff(p36_decl,type,
p36: $o ).
tff(p37_decl,type,
p37: $o ).
tff(p38_decl,type,
p38: $o ).
tff(p39_decl,type,
p39: $o ).
tff(p4_decl,type,
p4: $o ).
tff(p40_decl,type,
p40: $o ).
tff(p41_decl,type,
p41: $o ).
tff(p42_decl,type,
p42: $o ).
tff(p43_decl,type,
p43: $o ).
tff(p44_decl,type,
p44: $o ).
tff(p45_decl,type,
p45: $o ).
tff(p46_decl,type,
p46: $o ).
tff(p47_decl,type,
p47: $o ).
tff(p48_decl,type,
p48: $o ).
tff(p49_decl,type,
p49: $o ).
tff(p5_decl,type,
p5: $o ).
tff(p50_decl,type,
p50: $o ).
tff(p51_decl,type,
p51: $o ).
tff(p52_decl,type,
p52: $o ).
tff(p53_decl,type,
p53: $o ).
tff(p54_decl,type,
p54: $o ).
tff(p55_decl,type,
p55: $o ).
tff(p56_decl,type,
p56: $o ).
tff(p57_decl,type,
p57: $o ).
tff(p58_decl,type,
p58: $o ).
tff(p59_decl,type,
p59: $o ).
tff(p6_decl,type,
p6: $o ).
tff(p60_decl,type,
p60: $o ).
tff(p61_decl,type,
p61: $o ).
tff(p62_decl,type,
p62: $o ).
tff(p63_decl,type,
p63: $o ).
tff(p64_decl,type,
p64: $o ).
tff(p65_decl,type,
p65: $o ).
tff(p66_decl,type,
p66: $o ).
tff(p67_decl,type,
p67: $o ).
tff(p68_decl,type,
p68: $o ).
tff(p69_decl,type,
p69: $o ).
tff(p7_decl,type,
p7: $o ).
tff(p70_decl,type,
p70: $o ).
tff(p71_decl,type,
p71: $o ).
tff(p72_decl,type,
p72: $o ).
tff(p73_decl,type,
p73: $o ).
tff(p78_decl,type,
p78: $o ).
tff(p8_decl,type,
p8: $o ).
tff(p9_decl,type,
p9: $o ).
tff(prove,conjecture,
~ ~ ( [.] <.> ( [.] p78
| <.> ( ( p1
& ~ p2 )
| ( ~ p1
& p2 ) )
| [.] ( <.> ( ( p2
& ~ p3 )
| ( ~ p2
& p3 ) )
| [.] ( <.> ( ( p3
& ~ p4 )
| ( ~ p3
& p4 ) )
| [.] ( <.> ( ( p4
& ~ p5 )
| ( ~ p4
& p5 ) )
| [.] ( <.> ( ( p5
& ~ p6 )
| ( ~ p5
& p6 ) )
| [.] ( <.> ( ( p6
& ~ p7 )
| ( ~ p6
& p7 ) )
| [.] ( <.> ( ( p7
& ~ p8 )
| ( ~ p7
& p8 ) )
| [.] ( <.> ( ( p8
& ~ p9 )
| ( ~ p8
& p9 ) )
| [.] ( <.> ( ( p9
& ~ p10 )
| ( ~ p9
& p10 ) )
| [.] ( <.> ( ( p10
& ~ p11 )
| ( ~ p10
& p11 ) )
| [.] ( <.> ( ( p11
& ~ p12 )
| ( ~ p11
& p12 ) )
| [.] ( <.> ( ( p12
& ~ p13 )
| ( ~ p12
& p13 ) )
| [.] ( <.> ( ( p13
& ~ p14 )
| ( ~ p13
& p14 ) )
| [.] ( <.> ( ( p14
& ~ p15 )
| ( ~ p14
& p15 ) )
| [.] ( <.> ( ( p15
& ~ p16 )
| ( ~ p15
& p16 ) )
| [.] ( <.> ( ( p16
& ~ p17 )
| ( ~ p16
& p17 ) )
| [.] ( <.> ( ( p17
& ~ p18 )
| ( ~ p17
& p18 ) )
| [.] ( <.> ( ( p18
& ~ p19 )
| ( ~ p18
& p19 ) )
| [.] ( <.> ( ( p19
& ~ p20 )
| ( ~ p19
& p20 ) )
| [.] ( <.> ( ( p20
& ~ p21 )
| ( ~ p20
& p21 ) )
| [.] ( <.> ( ( p21
& ~ p22 )
| ( ~ p21
& p22 ) )
| [.] ( <.> ( ( p22
& ~ p23 )
| ( ~ p22
& p23 ) )
| [.] ( <.> ( ( p23
& ~ p24 )
| ( ~ p23
& p24 ) )
| [.] ( <.> ( ( p24
& ~ p25 )
| ( ~ p24
& p25 ) )
| [.] ( <.> ( ( p25
& ~ p26 )
| ( ~ p25
& p26 ) )
| [.] ( <.> ( ( p26
& ~ p27 )
| ( ~ p26
& p27 ) )
| [.] ( <.> ( ( p27
& ~ p28 )
| ( ~ p27
& p28 ) )
| [.] ( <.> ( ( p28
& ~ p29 )
| ( ~ p28
& p29 ) )
| [.] ( <.> ( ( p29
& ~ p30 )
| ( ~ p29
& p30 ) )
| [.] ( <.> ( ( p30
& ~ p31 )
| ( ~ p30
& p31 ) )
| [.] ( <.> ( ( p31
& ~ p32 )
| ( ~ p31
& p32 ) )
| [.] ( <.> ( ( p32
& ~ p33 )
| ( ~ p32
& p33 ) )
| [.] ( <.> ( ( p33
& ~ p34 )
| ( ~ p33
& p34 ) )
| [.] ( <.> ( ( p34
& ~ p35 )
| ( ~ p34
& p35 ) )
| [.] ( <.> ( ( p35
& ~ p36 )
| ( ~ p35
& p36 ) )
| [.] ( <.> ( ( p36
& ~ p37 )
| ( ~ p36
& p37 ) )
| [.] ( <.> ( ( p37
& ~ p38 )
| ( ~ p37
& p38 ) )
| [.] ( <.> ( ( p38
& ~ p39 )
| ( ~ p38
& p39 ) )
| [.] ( <.> ( ( p39
& ~ p40 )
| ( ~ p39
& p40 ) )
| [.] ( <.> ( ( p40
& ~ p41 )
| ( ~ p40
& p41 ) )
| [.] ( <.> ( ( p41
& ~ p42 )
| ( ~ p41
& p42 ) )
| [.] ( <.> ( ( p42
& ~ p43 )
| ( ~ p42
& p43 ) )
| [.] ( <.> ( ( p43
& ~ p44 )
| ( ~ p43
& p44 ) )
| [.] ( <.> ( ( p44
& ~ p45 )
| ( ~ p44
& p45 ) )
| [.] ( <.> ( ( p45
& ~ p46 )
| ( ~ p45
& p46 ) )
| [.] ( <.> ( ( p46
& ~ p47 )
| ( ~ p46
& p47 ) )
| [.] ( <.> ( ( p47
& ~ p48 )
| ( ~ p47
& p48 ) )
| [.] ( <.> ( ( p48
& ~ p49 )
| ( ~ p48
& p49 ) )
| [.] ( <.> ( ( p49
& ~ p50 )
| ( ~ p49
& p50 ) )
| [.] ( <.> ( ( p50
& ~ p51 )
| ( ~ p50
& p51 ) )
| [.] ( <.> ( ( p51
& ~ p52 )
| ( ~ p51
& p52 ) )
| [.] ( <.> ( ( p52
& ~ p53 )
| ( ~ p52
& p53 ) )
| [.] ( <.> ( ( p53
& ~ p54 )
| ( ~ p53
& p54 ) )
| [.] ( <.> ( ( p54
& ~ p55 )
| ( ~ p54
& p55 ) )
| [.] ( <.> ( ( p55
& ~ p56 )
| ( ~ p55
& p56 ) )
| [.] ( <.> ( ( p56
& ~ p57 )
| ( ~ p56
& p57 ) )
| [.] ( <.> ( ( p57
& ~ p58 )
| ( ~ p57
& p58 ) )
| [.] ( <.> ( ( p58
& ~ p59 )
| ( ~ p58
& p59 ) )
| [.] ( <.> ( ( p59
& ~ p60 )
| ( ~ p59
& p60 ) )
| [.] ( <.> ( ( p60
& ~ p61 )
| ( ~ p60
& p61 ) )
| [.] ( <.> ( ( p61
& ~ p62 )
| ( ~ p61
& p62 ) )
| [.] ( <.> ( ( p62
& ~ p63 )
| ( ~ p62
& p63 ) )
| [.] ( <.> ( ( p63
& ~ p64 )
| ( ~ p63
& p64 ) )
| [.] ( <.> ( ( p64
& ~ p65 )
| ( ~ p64
& p65 ) )
| [.] ( <.> ( ( p65
& ~ p66 )
| ( ~ p65
& p66 ) )
| [.] ( <.> ( ( p66
& ~ p67 )
| ( ~ p66
& p67 ) )
| [.] ( <.> ( ( p67
& ~ p68 )
| ( ~ p67
& p68 ) )
| [.] ( <.> ( ( p68
& ~ p69 )
| ( ~ p68
& p69 ) )
| [.] ( <.> ( ( p69
& ~ p70 )
| ( ~ p69
& p70 ) )
| [.] ( <.> ( ( p70
& ~ p71 )
| ( ~ p70
& p71 ) )
| [.] ( <.> ( ( p71
& ~ p72 )
| ( ~ p71
& p72 ) )
| [.] ( <.> ( ( p72
& ~ p73 )
| ( ~ p72
& p73 ) )
| [.] false ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) )
| [.] ( <.> p1
=> ~ p78 ) ) ).
%------------------------------------------------------------------------------