TPTP Problem File: SYO924_1.002.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SYO924_1.002 : TPTP v9.0.0. Released v9.0.0.
% Domain : Syntactic
% Problem : KSP problem s5_t4p_p.0002
% Version : Especial.
% English :
% Refs : [BHS00] Balsiger et al. (2000), A Benchmark Method for the Pro
% : [NH+22] Nalon et al. (2022), Local Reductions for the Modal Cu
% : [Nal22] Nalon (2022), Email to Geoff Sutcliffe
% : [NH+23] Nalon et al. (2023), Buy One Get 14 Free: Evaluating L
% Source : [Nal22]
% Names : s5_t4p_p.0002 [Nal22]
% Status : Theorem
% Rating : 0.00 v9.0.0
% Syntax : Number of formulae : 14 ( 0 unt; 13 typ; 0 def)
% Number of atoms : 167 ( 0 equ)
% Maximal formula atoms : 167 ( 167 avg)
% Number of connectives : 489 ( 88 ~; 78 |; 88 &)
% ( 0 <=>; 0 =>; 0 <=; 0 <~>)
% ( 235 {.}; 0 {#})
% Maximal formula depth : 31 ( 31 avg)
% Maximal term depth : 0 ( 0 avg)
% Number of types : 1 ( 0 usr)
% Number of type conns : 0 ( 0 >; 0 *; 0 +; 0 <<)
% Number of predicates : 13 ( 13 usr; 13 prp; 0-0 aty)
% Number of functors : 0 ( 0 usr; 0 con; --- aty)
% Number of variables : 0 (; 0 !; 0 ?; 0 :)
% SPC : NX0_THM_PRP_NEQ_NAR
% Comments : Uses instances of T and 4 to produce the formula.
%------------------------------------------------------------------------------
tff('s5_t4p_p.0002',logic,
$modal ==
[ $modalities == $modal_system_S5 ] ).
tff(p0_decl,type,
p0: $o ).
tff(p1_decl,type,
p1: $o ).
tff(p3_decl,type,
p3: $o ).
tff(p4_decl,type,
p4: $o ).
tff(x0_decl,type,
x0: $o ).
tff(y0_decl,type,
y0: $o ).
tff(y1_decl,type,
y1: $o ).
tff(y3_decl,type,
y3: $o ).
tff(y4_decl,type,
y4: $o ).
tff(z0_decl,type,
z0: $o ).
tff(z1_decl,type,
z1: $o ).
tff(z3_decl,type,
z3: $o ).
tff(z4_decl,type,
z4: $o ).
tff(prove,conjecture,
~ ( ( x0
& [.] ~ x0 )
| ( [.] ( <.> ( p1
| ( ~ y1
& [.] y1 )
| ( ~ z1
& <.> <.> <.> [.] z1 ) )
| [.] [.] ( ~ p1
| ( ~ y1
& [.] y1 )
| ( ~ z1
& <.> <.> <.> [.] z1 ) ) )
& <.> ( [.] ( <.> ( p1
| ( ~ y1
& [.] y1 )
| ( ~ z1
& <.> <.> <.> [.] z1 ) )
| [.] [.] ( ~ p1
| ( ~ y1
& [.] y1 )
| ( ~ z1
& <.> <.> <.> [.] z1 ) ) )
& <.> [.] <.> ( ~ p0
| ( ~ y0
& [.] y0 )
| ( ~ z0
& <.> <.> <.> [.] z0 ) )
& <.> ( <.> ( ~ p1
| ( ~ y1
& [.] y1 )
| ( ~ z1
& <.> <.> <.> [.] z1 ) )
& <.> [.] ( p1
| ( ~ y1
& [.] y1 )
| ( ~ z1
& <.> <.> <.> [.] z1 ) ) ) )
& <.> ( <.> ( ~ p1
| ( ~ y1
& [.] y1 )
| ( ~ z1
& <.> <.> <.> [.] z1 ) )
& <.> [.] ( p1
| ( ~ y1
& [.] y1 )
| ( ~ z1
& <.> <.> <.> [.] z1 ) ) )
& [.] ( <.> ( ~ p1
| ( ~ y1
& [.] y1 )
| ( ~ z1
& <.> <.> <.> [.] z1 ) )
| [.] [.] ( p1
| ( ~ y1
& [.] y1 )
| ( ~ z1
& <.> <.> <.> [.] z1 ) ) )
& [.] ( [.] ( <.> ( ~ p1
| ( ~ y1
& [.] y1 )
| ( ~ z1
& <.> <.> <.> [.] z1 ) )
| [.] [.] ( p1
| ( ~ y1
& [.] y1 )
| ( ~ z1
& <.> <.> <.> [.] z1 ) ) )
& [.] ( ( <.> [.] ( ~ p0
| ( ~ y0
& [.] y0 )
| ( ~ z0
& <.> <.> <.> [.] z0 ) )
| <.> ( ( p0
| ( ~ y0
& [.] y0 )
| ( ~ z0
& <.> <.> <.> [.] z0 ) )
& <.> ( ~ p3
| ( ~ y3
& [.] y3 )
| ( ~ z3
& <.> <.> <.> [.] z3 ) ) ) )
& [.] ( <.> [.] <.> ( ( p0
| ( ~ y0
& [.] y0 )
| ( ~ z0
& <.> <.> <.> [.] z0 ) )
& <.> ( ~ p3
| ( ~ y3
& [.] y3 )
| ( ~ z3
& <.> <.> <.> [.] z3 ) ) )
| <.> [.] ( ~ p0
| ( ~ y0
& [.] y0 )
| ( ~ z0
& <.> <.> <.> [.] z0 ) ) )
& ( <.> [.] ( ~ p0
| ( ~ y0
& [.] y0 )
| ( ~ z0
& <.> <.> <.> [.] z0 ) )
| [.] [.] <.> ( ( p0
| ( ~ y0
& [.] y0 )
| ( ~ z0
& <.> <.> <.> [.] z0 ) )
& <.> ( ~ p3
| ( ~ y3
& [.] y3 )
| ( ~ z3
& <.> <.> <.> [.] z3 ) ) ) )
& [.] ( [.] <.> [.] ( ~ p0
| ( ~ y0
& [.] y0 )
| ( ~ z0
& <.> <.> <.> [.] z0 ) )
| ~ p0
| ( ~ y0
& [.] y0 )
| ( ~ z0
& <.> <.> <.> [.] z0 )
| [.] ( ( p0
| ( ~ y0
& [.] y0 )
| ( ~ z0
& <.> <.> <.> [.] z0 ) )
& <.> ( ~ p3
| ( ~ y3
& [.] y3 )
| ( ~ z3
& <.> <.> <.> [.] z3 ) ) ) )
& [.] <.> ( ( p0
| ( ~ y0
& [.] y0 )
| ( ~ z0
& <.> <.> <.> [.] z0 ) )
& <.> ( ~ p3
| ( ~ y3
& [.] y3 )
| ( ~ z3
& <.> <.> <.> [.] z3 ) ) ) )
& [.] ( <.> [.] ( ~ p1
| ( ~ y1
& [.] y1 )
| ( ~ z1
& <.> <.> <.> [.] z1 ) )
| [.] [.] <.> ( p1
| ( ~ y1
& [.] y1 )
| ( ~ z1
& <.> <.> <.> [.] z1 ) ) ) )
& [.] ( <.> [.] ( ~ p1
| ( ~ y1
& [.] y1 )
| ( ~ z1
& <.> <.> <.> [.] z1 ) )
| [.] [.] <.> ( p1
| ( ~ y1
& [.] y1 )
| ( ~ z1
& <.> <.> <.> [.] z1 ) ) )
& [.] ( ~ p4
| ( ~ y4
& [.] y4 )
| ( ~ z4
& <.> <.> <.> [.] z4 ) ) ) ) ).
%------------------------------------------------------------------------------