TPTP Problem File: SYO886_5.221.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SYO886_5.221 : TPTP v9.0.0. Released v9.0.0.
% Domain : Syntactic
% Problem : Barcan scheme instance
% Version : Especial.
% English : If for all x necessarily f(x), then it is necessary that for
% all x f(x)
% Refs : [Bar46] Barcan (1946), A Functional Calculus of First Order Ba
% : [Sid10] Sider (2010), Logic for Philosophy
% : [RO12] Raths & Otten (2012), The QMLTP Problem Library for Fi
% Source : [TPTP]
% Names : SYM001+1 [QMLTP]
% Status : Theorem
% Rating : 1.00 v9.0.0
% Syntax : Number of formulae : 2 ( 0 unt; 1 typ; 0 def)
% Number of atoms : 6 ( 0 equ)
% Maximal formula atoms : 4 ( 6 avg)
% Number of connectives : 3 ( 0 ~; 0 |; 0 &)
% ( 0 <=>; 1 =>; 0 <=; 0 <~>)
% ( 2 {}@; 0 {#}; 0 {.})
% Maximal formula depth : 4 ( 4 avg)
% Maximal term depth : 1 ( 1 avg)
% Number of FOOLs : 2 ( 2 fml; 0 var)
% Number of types : 2 ( 0 usr)
% Number of type conns : 1 ( 1 >; 0 *; 0 +; 0 <<)
% Number of predicates : 2 ( 1 usr; 0 prp; 1-1 aty)
% Number of functors : 0 ( 0 usr; 0 con; --- aty)
% Number of variables : 2 (; 2 !; 0 ?; 2 :)
% SPC : NX0_THM_NEQ_NAR
% Comments :
%------------------------------------------------------------------------------
tff(s5_v_f_l,logic,
$modal ==
[ $domains == $varying,
$designation == $flexible,
$terms == $local,
$modalities == $modal_system_S5 ] ).
tff(f_decl,type,
f: $i > $o ).
tff(con,conjecture,
( ! [X: $i] : ( {$box} @ (f(X)) )
=> ( {$box}
@ (! [X: $i] : f(X)) ) ) ).
%------------------------------------------------------------------------------