TPTP Problem File: SYO885^1.010.010.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SYO885^1.010.010 : TPTP v9.0.0. Released v7.5.0.
% Domain : Syntactic
% Problem : Test higher-order unification procedure, 10,10,10
% Version : Biased.
% English :
% Refs : [VBN20] Vukmirovic et al. (2020), Efficient Full Higher-order
% : [Ben21] Bentkamp (2021) Email to Geoff Sutcliffe
% Source : [Ben21]
% Names : solid.10.10.10.p [Ben21]
% Status : Theorem
% Rating : 0.62 v9.0.0, 0.70 v8.2.0, 0.77 v8.1.0, 0.73 v7.5.0
% Syntax : Number of formulae : 12 ( 0 unt; 11 typ; 0 def)
% Number of atoms : 10 ( 10 equ; 0 cnn)
% Maximal formula atoms : 10 ( 10 avg)
% Number of connectives : 209 ( 0 ~; 0 |; 9 &; 200 @)
% ( 0 <=>; 0 =>; 0 <=; 0 <~>)
% Maximal formula depth : 11 ( 11 avg)
% Number of types : 1 ( 0 usr)
% Number of type conns : 20 ( 20 >; 0 *; 0 +; 0 <<)
% Number of symbols : 12 ( 11 usr; 10 con; 0-10 aty)
% Number of variables : 1 ( 0 ^; 0 !; 1 ?; 1 :)
% SPC : TH0_THM_EQU_NAR
% Comments : Possible solution : F -> ^[X0 : $i,X1 : $i,X2 : $i,X3 : $i,
% X4 : $i,X5 : $i,X6 : $i,X7 : $i,X8 : $i,X9 : $i]: f
% @ a9 @ X7 @ a6 @ a4 @ X5 @ X0 @ X3 @ X2 @ a8 @ a1
% : Biased because it was desiged for testing features in
% Zipperposition.
%------------------------------------------------------------------------------
thf(a0_type,type,
a0: $i ).
thf(a1_type,type,
a1: $i ).
thf(a2_type,type,
a2: $i ).
thf(a3_type,type,
a3: $i ).
thf(a4_type,type,
a4: $i ).
thf(a5_type,type,
a5: $i ).
thf(a6_type,type,
a6: $i ).
thf(a7_type,type,
a7: $i ).
thf(a8_type,type,
a8: $i ).
thf(a9_type,type,
a9: $i ).
thf(f_type,type,
f: $i > $i > $i > $i > $i > $i > $i > $i > $i > $i > $i ).
thf(goal,conjecture,
? [F: $i > $i > $i > $i > $i > $i > $i > $i > $i > $i > $i] :
( ( ( F @ a2 @ a4 @ a8 @ a3 @ a1 @ a7 @ a0 @ a5 @ a9 @ a6 )
= ( f @ a9 @ a5 @ a6 @ a4 @ a7 @ a2 @ a3 @ a8 @ a8 @ a1 ) )
& ( ( F @ a3 @ a2 @ a1 @ a4 @ a5 @ a6 @ a9 @ a7 @ a8 @ a0 )
= ( f @ a9 @ a7 @ a6 @ a4 @ a6 @ a3 @ a4 @ a1 @ a8 @ a1 ) )
& ( ( F @ a4 @ a6 @ a2 @ a8 @ a3 @ a0 @ a1 @ a5 @ a7 @ a9 )
= ( f @ a9 @ a5 @ a6 @ a4 @ a0 @ a4 @ a8 @ a2 @ a8 @ a1 ) )
& ( ( F @ a8 @ a9 @ a1 @ a5 @ a4 @ a3 @ a7 @ a2 @ a0 @ a6 )
= ( f @ a9 @ a2 @ a6 @ a4 @ a3 @ a8 @ a5 @ a1 @ a8 @ a1 ) )
& ( ( F @ a6 @ a1 @ a9 @ a3 @ a2 @ a4 @ a5 @ a7 @ a0 @ a8 )
= ( f @ a9 @ a7 @ a6 @ a4 @ a4 @ a6 @ a3 @ a9 @ a8 @ a1 ) )
& ( ( F @ a7 @ a8 @ a9 @ a0 @ a6 @ a2 @ a1 @ a3 @ a5 @ a4 )
= ( f @ a9 @ a3 @ a6 @ a4 @ a2 @ a7 @ a0 @ a9 @ a8 @ a1 ) )
& ( ( F @ a6 @ a0 @ a5 @ a7 @ a1 @ a8 @ a4 @ a9 @ a2 @ a3 )
= ( f @ a9 @ a9 @ a6 @ a4 @ a8 @ a6 @ a7 @ a5 @ a8 @ a1 ) )
& ( ( F @ a8 @ a2 @ a5 @ a0 @ a4 @ a3 @ a9 @ a6 @ a7 @ a1 )
= ( f @ a9 @ a6 @ a6 @ a4 @ a3 @ a8 @ a0 @ a5 @ a8 @ a1 ) )
& ( ( F @ a6 @ a4 @ a2 @ a5 @ a9 @ a3 @ a1 @ a8 @ a0 @ a7 )
= ( f @ a9 @ a8 @ a6 @ a4 @ a3 @ a6 @ a5 @ a2 @ a8 @ a1 ) )
& ( ( F @ a6 @ a4 @ a2 @ a9 @ a5 @ a7 @ a3 @ a0 @ a1 @ a8 )
= ( f @ a9 @ a0 @ a6 @ a4 @ a7 @ a6 @ a9 @ a2 @ a8 @ a1 ) ) ) ).
%------------------------------------------------------------------------------